Temperature-stabilized novel high-entropy microwave dielectric (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics

Xingyue Liao , Yuanming Lai , Huan Huang , Mingjun Xie , Weiping Gong , Yuanxun Li , Qian Liu , Chongsheng Wu , Jiao Han , Yiming Zeng

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 1978 -1986.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 1978 -1986. DOI: 10.1007/s12613-024-3021-6
Research Article
research-article

Temperature-stabilized novel high-entropy microwave dielectric (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics

Author information +
History +
PDF

Abstract

A series of high-entropy ceramics with the nominal composition (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 (0 ≤ x ≤ 0.4) has been successfully synthesized using the conventional solid-phase method. The (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics are confirmed to be composed of the main phase (Zn,Mg,Li)TiO3 and the secondary phase Ca0.5Sr0.5TiO3 by X-ray diffractometer, Rietveld refinement, and X-ray spectroscopy analysis. The quality factor (Q×f) of the samples is inversely proportional to the content of the Ca0.5Sr0.5TiO3 phase, and it is influenced by the density. The secondary phase and molecular polarizability (αT) have a significant impact on the dielectric constant (εr) of the samples. Moreover, the temperature coefficient of resonant frequency (τf) of the samples is determined by the distortion of [TiO6] octahedra and the secondary phase. The results indicate that (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics achieve ideal microwave dielectric properties (εr = 17.6, Q×f = 40900 GHz, τf = −8.6 ppm/°C) when x = 0.35. (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics possess the potential for application in wireless communication, and a new approach has been provided to enhance the performance of microwave dielectric ceramics.

Keywords

high-entropy ceramics / magnesium metatitanate-based ceramics / microwave dielectric properties / near-zero the temperature coefficient of resonant frequency value

Cite this article

Download citation ▾
Xingyue Liao, Yuanming Lai, Huan Huang, Mingjun Xie, Weiping Gong, Yuanxun Li, Qian Liu, Chongsheng Wu, Jiao Han, Yiming Zeng. Temperature-stabilized novel high-entropy microwave dielectric (Mg0.5Zn0.5)0.4+xLi0.4(Ca0.5Sr0.5)0.4−xTiO3 ceramics. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(8): 1978-1986 DOI:10.1007/s12613-024-3021-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiuB, LiL, SongKX, et al.. Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process. J. Eur. Ceram. Soc., 2021, 4121726

[2]

LiuK, LiuC, LiJ, JinLC, ZhangHW. Relationship between structure and properties of microwave dielectric ceramic Li(1+x)2MgTi3O8 based on Li non-stoichiometry. J. Materiomics, 2023, 92279

[3]

ZhangQ, TangXL, HuangFY, WuXH, LiYX, SuH. Enhanced microwave dielectric properties of wolframite structured Zn1−xCuxWO4 ceramics with low sintering temperature. J. Materiomics, 2021, 761309

[4]

KeBR, SunYC, ZhangY, et al.. Powder metallurgy of high-entropy alloys and related composites: A short review. Int. J. Miner. Metall. Mater., 2021, 286931

[5]

Y.P. Lu, Y. Dong, S. Guo, et al., A promising new class of high-temperature alloys: Eutectic high-entropy alloys, Sci. Rep., 4(2014), art. No. 6200.

[6]

LeiZF, LiuXJ, WangH, WuY, JiangSH, LuZP. Development of advanced materials via entropy engineering. Scripta Mater., 2019, 165164

[7]

GuoQW, XuXT, PeiXL, et al.. Predict the phase formation of high-entropy alloys by compositions. J. Mater. Res. Technol., 2023, 223331

[8]

LiuK, ZhangHW, LiuC, et al.. Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 – A novel high-entropy ceramic. Ceram. Int., 2022, 481623307

[9]

X.Y. Zhang, X.Y. Liu, J.H. Yan, Y.H. Gu, and X.W. Qi, Preparation and property of high entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 perovskite ceramics, J. Inorg. Mater., 36(2021), No. 4, art. No. 379.

[10]

XiangHC, YaoL, ChenJQ, YangAH, YangHT, FangL. Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies. J. Mater. Sci. Technol., 2021, 9328

[11]

KimES, JeonCJ. Microwave dielectric properties of ATiO3 (A = Ni, Mg, Co, Mn) ceramics. J. Eur. Ceram. Soc., 2010, 302341

[12]

ZhangJ, YueZX, LuoY, LiLT. MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceram. Int., 2018, 441721000

[13]

ChungJS, KimES. Improvement of microwave dielectric properties of MgTiO3 ceramics by Ti-site complex substitution. Electron. Mater. Lett., 2024, 20156

[14]

FilipovićS, PavlovićVP, ObradovićN, PaunovićV, MacaK, PavlovićVB. The impedance analysis of sintered MgTiO3 ceramics. J. Alloy. Compd., 2017, 701107

[15]

HuangCL, LiuSS. Dielectric characteristics of the (1−x)Mg2TiO4−xSrTiO3 ceramic system at microwave frequencies. J. Alloy. Compd., 2009, 4711–2L9

[16]

T. Shi, F. Zhang, W.Y. Sun, et al., Fabrication, sinterability and microwave dielectric properties of MgTiO3–(Ca0.8Sr0.2)TiO3 composite ceramics from nanosized powders, Vacuum, 201(2022), art. No. 111107.

[17]

BérardanD, FrangerS, MeenaAK, DragoeN. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A, 2016, 4249536

[18]

C.L. Huang and S.S. Liu, Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency, Jpn. J. Appl. Phys., 46(2007), No. 1R, art. No. 283.

[19]

C. Qi, F.S. Wang, Y.M. Lai, et al., Temperature stability of Li2TiO3–Zn2SiO4 microwave dielectric ceramics, Eur. J. Inorg. Chem., 2022(2022), No. 29, art. No. e202200380.

[20]

X. Li, X.Z. Yang, Y.M. Lai, et al., Improved microwave dielectric properties of MgAl2O4 spinel ceramics through (Li1/3Ti2/3)3+ doping, Chin. Phys. B, 32(2023), No. 5, art. No. 057701.

[21]

UllahB, LeiW, YaoYF, et al.. Structure and synergy performance of (1–x)Sr0.25Ce0.5TiO3−xLa(Mg0.5Ti0.5)O3 based microwave dielectric ceramics for 5G architecture. J. Alloy. Compd., 2018, 763990

[22]

X.Z. Yang, Y.M. Lai, Y.M. Zeng, et al., Spinel-type solid solution ceramic MgAl2O4–Mg2TiO4 with excellent microwave dielectric properties, J. Alloy. Compd., 898(2022), art. No. 162905.

[23]

F.S. Wang, Y.M. Lai, Q. Zhang, et al., Improved microwave dielectric properties of (Mg0.5Ti0.5)3+ co-substituted Mg2Al4Si5O18 cordierite ceramics, Solid State Sci., 132(2022), art. No. 106989.

[24]

YangJ, SwisherJH. The phase stability of Zn2Ti3O8. Mater. Charact., 1996, 372–3153

[25]

LiaoWM, TianJH, ShanZQ, NaR, CuiL, LinHZ. Facile synthesis of Zn2Ti3O8 hollow spheres based on ion exchange as promising anodes for lithium ion batteries. Electrochim. Acta, 2016, 21694

[26]

B.Y. Li, Y.M. Lai, Y.M. Zeng, et al., Structure and microwave dielectric properties of (Zn1/3Nb2/3)4+ co-substituted MgTiO3 ceramic, Mater. Sci. Eng. B, 276(2022), art. No. 115572.

[27]

A. Zhang, H.Q. Fan, D.W. Hou, et al., A novel low-loss (1–x)(Ca0.8Sr0.2)TiO3−xSmAlO3 microwave dielectric ceramics with near-zero temperature coefficient, J. Alloy. Compd., 898(2022), art. No. 162809.

[28]

ParraMR, HaqueFZ. Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol., 2014, 34363

[29]

LiuZY, XuSC, LiT, XieB, GuoK, LuJS. Micro-structure and ferroelectric properties of high-entropy perovskite oxides with A-site disorder. Ceram. Int., 2021, 472333039

[30]

SuT, ChenHL, WeiZY, et al.. Structure and microwave dielectric properties of Al3+-doped (Zn1/6Ba1/6Ca1/6Sr1/6La1/3)TiO3 high-entropy ceramics system. Ceram. Int., 2024, 5035043

[31]

LiJ, LanXK, DuK, et al.. Crystal structure and temperature dependence of permittivity in Barium aluminate based solid solutions. J. Am. Ceram. Soc., 2019, 102127480

[32]

ShannonRD. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys., 1993, 731348

[33]

ChenCY, PengZJ, XieLZ, BiK, FuXL. Microwave dielectric properties of novel (1−x)MgTiO3−xCa0.5Sr0,5TiO3 ceramics. J. Mater. Sci.: Mater. Electron., 2020, 311613696

[34]

LuoT, ShanXX, ZhaoJW, et al.. Improvement of quality factor of SrTiO3 dielectric ceramics with high dielectric constant using Sm2O3. J. Am. Ceram. Soc., 2019, 10273849

[35]

SurendranKP, SanthaN, MohananP, SebastianMT. Temperature stable low loss ceramic dielectrics in (1−x)ZnAl2O4−xTiO2 system for microwave substrate applications. Eur. Phys. J. B, 2004, 413301

[36]

ZhouSY, PuYP, ZhangQW, et al.. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceram. Int., 2020, 4667430

[37]

ZhuXD, KongFT, MaXS. Sintering behavior and properties of MgTiO3/CaO-B2O3–SiO2 ceramic composites for LTCC applications. Ceram. Int., 2019, 4521940

[38]

WangXH, MuML, JiangH, LeiW, LuWZ. Investigation on structure and microwave dielectric properties of novel high dielectric constant Ca(1–3x/2)CexTiO3 ceramics sintered in nitrogen atmosphere. J. Mater. Sci.: Mater. Electron., 2019, 3021591

[39]

KimHT, KimY, ValantM, SuvorovD. Titanium incorporation in Zn2TiO4 spinel ceramics. J. Am. Ceram. Soc., 2001, 8451081

[40]

T.H. Hsu and C.L. Huang, Microwave dielectric properties of ultra-low-temperature-sintered TiO2 as a τf compensator, Appl. Phys. A, 129(2023), No. 1, art. No. 20.

[41]

ChengL, LiuP, QuSX, ChengL, ZhangHW. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloy. Compd., 2015, 623238

[42]

WangM, ZhouJ, YueZX, LiLT, GuiZL. Co-firing behavior of ZnTiO3–TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters. Mater. Sci. Eng. B, 2003, 991–3262

[43]

WuY, ZhouD, GuoJ, PangLX, WangH, YaoX. Temperature stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss. Mater. Lett., 2011, 6517–182680

[44]

RenZZ, ZengFJ, YuanCL, et al.. Enhanced quality factor (∼336,800 GHz) of MgTiO3 ceramic by Hf substitution for Ti-site. Ceram. Int., 2024, 5069861

[45]

SharmaK, BahelS. Structural, dielectric and reflection analysis of ZnxMg1−xTiO3 ceramics synthesized using auto-ignition combustion method. J. Mater. Sci.: Mater. Electron., 2021, 322327216

[46]

FangZX, YangHY, YangHC, et al.. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int., 2021, 471521388

[47]

WangMJ, YanDM. Improved crystalline structure and sintering characteristics of nonstoichiometric MgTiO3 ceramics by sol–gel method. J. Sol-Gel Sci. Technol., 2021, 972365

[48]

JiaXB, XuY, ZhaoP, LiJH, LiW. Structural dependence of microwave dielectric properties in ilmenite-type Mg(Ti1−xNbx)O3 solid solutions by Rietveld refinement and Raman spectra. Ceram. Int., 2021, 4744820

[49]

YuanSF, GanL, NingFF, AnSB, JiangJ, ZhangTJ. High-Q×f 0.95MgTiO3–0.05CaTiO3 microwave dielectric ceramics with the addition of LiF sintered at medium temperatures. Ceram. Int., 2018, 441620566

[50]

LinSH, ChenYB. Low dielectric loss characteristics of [(Mg1−xZnx)0.95Co0.05]1.02TiO3.02 ceramics at microwave frequencies. J. Mater. Sci.: Mater. Electron., 2017, 2854154

[51]

JoHJ, KimJS, KimES. Microwave dielectric properties of MgTiO3-based ceramics. Ceram. Int., 2015, 41S530

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/