Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents

Jessada Khajonrit , Thongsuk Sichumsaeng , Pinit Kidkhunthod , Supree Pinitsoontorn , Niwat Hemha , Kittima Salangsing , Anissa Srisongmueang , Santi Maensiri

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 944 -953.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 944 -953. DOI: 10.1007/s12613-024-3019-0
Research Article

Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents

Author information +
History +
PDF

Abstract

The Fe1−xNixVO4 (x = 0, 0.05, 0.10, and 0.20) nanoparticles in this work were successfully synthesized via a co-precipitation method. The structural, magnetic and electrochemical properties of the prepared Fe1−xNixVO4 nanoparticles were studied as a function of Ni content. The experimental results show that the prepared Ni-doped FeVO4 samples have a triclinic structure. Scanning electron microscopy (SEM) images reveal a decrease in average nanoparticle size with increasing Ni content, leading to an enhancement in both specific surface area and magnetization values. X-ray absorption near edge structure (XANES) analysis confirms the substitution of Ni2+ ions into Fe3+ sites. The magnetic investigation reveals that Ni-doped FeVO4 exhibits weak ferromagnetic behavior at room temperature, in contrast to the antiferromagnetic behavior observed in the undoped FeVO4. Electrochemical studies demonstrate that the Fe0.95Ni0.05VO4 electrode achieves the highest specific capacitance of 334.05 F·g−1 at a current density of 1 A·g−1, which is attributed to its smallest average pore diameter. In addition, the enhanced specific surface of the Fe0.8Ni0.2VO4 electrode is responsible for its outstanding cyclic stability. Overall, our results suggest that the magnetic and electrochemical properties of FeVO4 nanoparticles could be effectively tuned by varying Ni doping contents.

Keywords

iron vanadate (FeVO4) / co-precipitation method / Ni doping content / magnetic properties / electrochemical properties

Cite this article

Download citation ▾
Jessada Khajonrit, Thongsuk Sichumsaeng, Pinit Kidkhunthod, Supree Pinitsoontorn, Niwat Hemha, Kittima Salangsing, Anissa Srisongmueang, Santi Maensiri. Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(4): 944-953 DOI:10.1007/s12613-024-3019-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D.J. Pandya, P. Muthu Pandian, I. Kumar, et al., Supercapacitors: Review of materials and fabrication methods, Mater. Today Proc., (2023) DOI: https://doi.org/10.1016/j.matpr.2023.10.148.

[2]

AndersonTR, HawkinsE, JonesPD. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 2016, 40(3): 178

[3]

YoroKO, DaramolaMORahimpourMR, FarsiM, MakaremMA. CO2 emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture, 2020, Cambridge, Woodhead Publishing: 3

[4]

T.Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, and N. Prabaharan, A comprehensive study of renewable energy sources: Classifications, challenges and suggestions, Energy Strategy Rev., 43(2022), art. No. 100939.

[5]

GulE, BaldinelliG, BartocciP, et al.. Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy. Renewable Energy, 2023, 207: 672

[6]

SimonP, GogotsiY. Materials for electrochemical capacitors. Nat. Mater., 2008, 7(11): 845

[7]

ShaoYL, El-KadyMF, SunJY, et al.. Design and mechanisms of asymmetric supercapacitors. Chem. Rev., 2018, 118(18): 9233

[8]

YangPH, MaiWJ. Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014, 8: 274

[9]

ChenSH, QiuL, ChengHM. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev., 2020, 120(5): 2811

[10]

LangXY, HirataA, FujitaT, ChenMW. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol., 2011, 6(4): 232

[11]

ChoiC, AshbyDS, ButtsDM, et al.. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater., 2020, 5(1): 5

[12]

R.B. Liang, Y.Q. Du, P. Xiao, et al., Transition metal oxide electrode materials for supercapacitors: A review of recent developments, Nanomaterials, 11(2021), No. 5, art. No. 1248.

[13]

H.W. Park and K.C. Roh, Recent advances in and perspectives on pseudocapacitive materials for supercapacitors–A review, J. Power Sources, 557(2023), art. No. 232558.

[14]

D.B. Malavekar, V.V. Magdum, S.D. Khot, J.H. Kim, and C.D. Lokhande, Doping of rare earth elements: Towards enhancing the electrochemical performance of pseudocapacitive materials, J. Alloys Compd., 960(2023), art. No. 170601.

[15]

AlsulamiA, KumarswamyYK, PrashanthMK, et al.. Fabrication of FeVO4/RGO nanocomposite: An amperometric probe for sensitive detection of methyl parathion in green beans and solar light-induced degradation. ACS Omega, 2022, 7(49): 45239

[16]

SajidMM, ZhaiHF, IqbalMA, ShadNA, MunawarA. Tunable Fe+3 and W+6 Co-doped BiVO4 nanohybrids with efficient photocatalytic and electrochemical chemical sensing characteristics. Ceram. Int., 2024, 50(1): 957

[17]

S. Majumder, A.A. Yadav, L.A.M. Gomez, Y.M. Hunge, R. Srinivasan, and K.H. Kim, Unlocking clean energy: Exploring FeVO4 nanopebble thin film as an outstanding photoanode for efficient water splitting, J. Alloys Compd., 1002(2024), art. No. 175391.

[18]

NiuXG, ZhangYC, TanLL, et al.. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater., 2019, 22: 160

[19]

M.A. Awad, A.A. Hendi, S. Natarajan, et al., Wet chemical synthesis and characterization of FeVO4 nanoparticles for super capacitor as energy storage device, J. King Saud Univ. Sci., 35(2023), No. 8, art. No. 102857.

[20]

A. Dixit, G. Lawes, and A.B. Harris, Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO4, Phys. Rev. B: Condens. Matter, 82(2010), No. 2, art. No. 024430.

[21]

López-MorenoS, ErrandoneaD, Pellicer-PorresJ, et al.. Stability of FeVO4 under pressure: An X-ray diffraction and first-principles study. Inorg. Chem., 2018, 57(13): 7860

[22]

NguyenTH, AhmedMG, ZhangMY, et al.. Enhancing photoelectrochemical performance of the printed nanoporous FeVO4 photoanode by dual-layer CoOx–CoPi catalysts. ACS Appl. Energy Mater., 2023, 6(15): 8297

[23]

FengJY, WangZQ, ZhaoX, et al.. Probing the performance limitations in thin-film FeVO4 photoanodes for solar water splitting. J. Phys. Chem. C, 2018, 122(18): 9773

[24]

U. Rajaji, Y.K. K, S.M. Chen, et al., Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: Electrochemical sensing tool for doxorubicin, Mikrochim. Acta, 188(2021), No. 9, art. No. 303.

[25]

HeZZ, YamauraJI, UedaY. Flux growth and magnetic properties of FeVO4 single crystals. J. Solid State Chem., 2008, 181(9): 2346

[26]

H.J. Xu, J.X. Fan, D. Pang, et al., Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries, Chem. Eng. J., 436(2022), art. No. 135012.

[27]

O.M. Pardeshi, S. Naeem, and A.V. Patil, Synthesis of FeVO4 nanoparticles using sol–gel auto-combustion method and their application in supercapacitors, Energy Storage, 6(2024), No. 5, art. No. e683.

[28]

JoWJ, JangJW, KongKJ, et al.. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed, 2012, 51(13): 3147

[29]

LiuQ, YangB, LiuJY, et al.. Application of chemical doping and architectural design principles to fabricate nanowire Co2Ni3ZnO8 arrays for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces, 2016, 8(31): 20157

[30]

M. Munir Sajid, H.F. Zhai, M.A. Iqbal, et al., Experimental insights on the synthesis and characteristics of Fe1−xBixVO4 photocatalysts for efficient environmental and electrical applications, Arabian J. Chem., 16(2023), No. 8, art. No. 104986.

[31]

PhuanYW, IbrahimE, ChongMN, et al.. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p–n junction photoanode. Appl. Surf. Sci., 2017, 392: 144

[32]

KumarR, SahooS, JoanniE, et al.. Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today, 2020, 39: 47

[33]

B. Jansi Rani, G. Ravi, R. Yuvakkumar, et al., Ni supported anorthic phase FeVO4 nanorods for electrochemical water oxidation, Mater. Lett., 275(2020), art. No. 128091.

[34]

WuGX, FengX, ZhangHL, et al.. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3. Appl. Surf. Sci., 2018, 427: 24

[35]

RavelB, NewvilleM. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat., 2005, 12(4): 537

[36]

T. Luangwanta, A. Chachvalvutikul, and S. Kaowphong, Facile synthesis and enhanced photocatalytic activity of a novel FeVO4/Bi4O5Br2 heterojunction photocatalyst through step-scheme charge transfer mechanism, Colloids Surf. A, 627(2021), art. No. 127217.

[37]

HolderC, SchaakRE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 2019, 13(7): 7359

[38]

T. Gholam, L.R. Zheng, J.O. Wang, H.J. Qian, R. Wu, and H.Q. Wang, Synchrotron X-ray absorption spectroscopy study of local structure in Al-doped BiFeO3 powders, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 137.

[39]

HuangZJ, WangZX, ZhengXB, et al.. Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries. RSC Adv., 2015, 5(108): 88773

[40]

L.N. Xu, J. Li, H.B. Sun, et al., In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors, Front. Chem., 7(2019), art. No. 420.

[41]

Y.H. Wen, G.P. Cao, J. Cheng, and Y.S. Yang, Correlation of capacitance with the pore structure for nanoporous glassy carbon electrodes, J. Electrochem. Soc., 152(2005), No. 9, art. No. A1770.

[42]

NithyaVD, SelvanRK, SanjeevirajaC, RadheepDM, ArumugamS. Synthesis and characterization of FeVO4 nanoparticles. Mater. Res. Bull., 2011, 46(10): 1654

[43]

IssaB, ObaidatIM, AlbissBA, HaikY. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14(11): 21266

[44]

SiYC, LiuGN, DengCH, LiuW, LiHH, TangL. Facile synthesis and electrochemical properties of amorphous FeVO4 as cathode materials for lithium secondary batteries. J. Electroanal. Chem., 2017, 787: 19

[45]

MengLC, GuoRS, SunXH, et al.. Enhanced electrochemical performance of a promising anode material FeVO4 by tungsten doping. Ceram. Int., 2020, 46(13): 21360

[46]

K.A. Owusu, L. Qu, J. Li, et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, Nat. Commun., 8(2017), art. No. 14264.

[47]

T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha, and E. Swatsitang, Influence of Co doping on phase, structure and electrochemical properties of hydrothermally obtained CoxZn1−xFe2O4 (x = 0.0–0.4) nanoparticles, Sci. Rep., 13(2023), art. No. 2531.

[48]

YanJ, LiuJP, FanZJ, WeiT, ZhangLJ. High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon, 2012, 50(6): 2179

[49]

J. Khajonrit, N. Prasoetsopha, T. Sinprachim, P. Kidkhunthod, S. Pinitsoontorn, and S. Maensiri, Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 8(2017), No. 1, art. No. 015010.

[50]

NithyaVD, Kalai SelvanR, KalpanaD, VasylechkoL, SanjeevirajaC. Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim. Acta, 2013, 109: 720

[51]

MishraA, BeraG, MalP, et al.. Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surf. Sci., 2019, 488: 221

[52]

NithyaVD, PandiK, LeeYS, SelvanRK. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta, 2015, 167: 97

[53]

A. George, S. Rahul, A. Dhayal Raj, Q.Q. Yang, C. Sridevi, and J. Madona, Surfactant-assisted hydrothermal synthesis of FeVO4 nanoparticles for supercapacitor applications, Can. J. Chem., (2024). DOI: https://doi.org/10.1139/cjc-2024-0080

[54]

FengXS, HuangY, ChenXF, WeiC, ZhangX, ChenMH. Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties. J. Mater. Sci., 2018, 53(4): 2648

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/