Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents
Jessada Khajonrit , Thongsuk Sichumsaeng , Pinit Kidkhunthod , Supree Pinitsoontorn , Niwat Hemha , Kittima Salangsing , Anissa Srisongmueang , Santi Maensiri
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 944 -953.
Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents
The Fe1−xNixVO4 (x = 0, 0.05, 0.10, and 0.20) nanoparticles in this work were successfully synthesized via a co-precipitation method. The structural, magnetic and electrochemical properties of the prepared Fe1−xNixVO4 nanoparticles were studied as a function of Ni content. The experimental results show that the prepared Ni-doped FeVO4 samples have a triclinic structure. Scanning electron microscopy (SEM) images reveal a decrease in average nanoparticle size with increasing Ni content, leading to an enhancement in both specific surface area and magnetization values. X-ray absorption near edge structure (XANES) analysis confirms the substitution of Ni2+ ions into Fe3+ sites. The magnetic investigation reveals that Ni-doped FeVO4 exhibits weak ferromagnetic behavior at room temperature, in contrast to the antiferromagnetic behavior observed in the undoped FeVO4. Electrochemical studies demonstrate that the Fe0.95Ni0.05VO4 electrode achieves the highest specific capacitance of 334.05 F·g−1 at a current density of 1 A·g−1, which is attributed to its smallest average pore diameter. In addition, the enhanced specific surface of the Fe0.8Ni0.2VO4 electrode is responsible for its outstanding cyclic stability. Overall, our results suggest that the magnetic and electrochemical properties of FeVO4 nanoparticles could be effectively tuned by varying Ni doping contents.
iron vanadate (FeVO4) / co-precipitation method / Ni doping content / magnetic properties / electrochemical properties
| [1] |
D.J. Pandya, P. Muthu Pandian, I. Kumar, et al., Supercapacitors: Review of materials and fabrication methods, Mater. Today Proc., (2023) DOI: https://doi.org/10.1016/j.matpr.2023.10.148. |
| [2] |
|
| [3] |
|
| [4] |
T.Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, and N. Prabaharan, A comprehensive study of renewable energy sources: Classifications, challenges and suggestions, Energy Strategy Rev., 43(2022), art. No. 100939. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
R.B. Liang, Y.Q. Du, P. Xiao, et al., Transition metal oxide electrode materials for supercapacitors: A review of recent developments, Nanomaterials, 11(2021), No. 5, art. No. 1248. |
| [13] |
H.W. Park and K.C. Roh, Recent advances in and perspectives on pseudocapacitive materials for supercapacitors–A review, J. Power Sources, 557(2023), art. No. 232558. |
| [14] |
D.B. Malavekar, V.V. Magdum, S.D. Khot, J.H. Kim, and C.D. Lokhande, Doping of rare earth elements: Towards enhancing the electrochemical performance of pseudocapacitive materials, J. Alloys Compd., 960(2023), art. No. 170601. |
| [15] |
|
| [16] |
|
| [17] |
S. Majumder, A.A. Yadav, L.A.M. Gomez, Y.M. Hunge, R. Srinivasan, and K.H. Kim, Unlocking clean energy: Exploring FeVO4 nanopebble thin film as an outstanding photoanode for efficient water splitting, J. Alloys Compd., 1002(2024), art. No. 175391. |
| [18] |
|
| [19] |
M.A. Awad, A.A. Hendi, S. Natarajan, et al., Wet chemical synthesis and characterization of FeVO4 nanoparticles for super capacitor as energy storage device, J. King Saud Univ. Sci., 35(2023), No. 8, art. No. 102857. |
| [20] |
A. Dixit, G. Lawes, and A.B. Harris, Magnetic structure and magnetoelectric coupling in bulk and thin film FeVO4, Phys. Rev. B: Condens. Matter, 82(2010), No. 2, art. No. 024430. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
U. Rajaji, Y.K. K, S.M. Chen, et al., Deep eutectic solvent synthesis of iron vanadate-decorated sulfur-doped carbon nanofiber nanocomposite: Electrochemical sensing tool for doxorubicin, Mikrochim. Acta, 188(2021), No. 9, art. No. 303. |
| [25] |
|
| [26] |
H.J. Xu, J.X. Fan, D. Pang, et al., Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries, Chem. Eng. J., 436(2022), art. No. 135012. |
| [27] |
O.M. Pardeshi, S. Naeem, and A.V. Patil, Synthesis of FeVO4 nanoparticles using sol–gel auto-combustion method and their application in supercapacitors, Energy Storage, 6(2024), No. 5, art. No. e683. |
| [28] |
|
| [29] |
|
| [30] |
M. Munir Sajid, H.F. Zhai, M.A. Iqbal, et al., Experimental insights on the synthesis and characteristics of Fe1−xBixVO4 photocatalysts for efficient environmental and electrical applications, Arabian J. Chem., 16(2023), No. 8, art. No. 104986. |
| [31] |
|
| [32] |
|
| [33] |
B. Jansi Rani, G. Ravi, R. Yuvakkumar, et al., Ni supported anorthic phase FeVO4 nanorods for electrochemical water oxidation, Mater. Lett., 275(2020), art. No. 128091. |
| [34] |
|
| [35] |
|
| [36] |
T. Luangwanta, A. Chachvalvutikul, and S. Kaowphong, Facile synthesis and enhanced photocatalytic activity of a novel FeVO4/Bi4O5Br2 heterojunction photocatalyst through step-scheme charge transfer mechanism, Colloids Surf. A, 627(2021), art. No. 127217. |
| [37] |
|
| [38] |
T. Gholam, L.R. Zheng, J.O. Wang, H.J. Qian, R. Wu, and H.Q. Wang, Synchrotron X-ray absorption spectroscopy study of local structure in Al-doped BiFeO3 powders, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 137. |
| [39] |
|
| [40] |
L.N. Xu, J. Li, H.B. Sun, et al., In situ growth of Cu2O/CuO nanosheets on Cu coating carbon cloths as a binder-free electrode for asymmetric supercapacitors, Front. Chem., 7(2019), art. No. 420. |
| [41] |
Y.H. Wen, G.P. Cao, J. Cheng, and Y.S. Yang, Correlation of capacitance with the pore structure for nanoporous glassy carbon electrodes, J. Electrochem. Soc., 152(2005), No. 9, art. No. A1770. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
K.A. Owusu, L. Qu, J. Li, et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, Nat. Commun., 8(2017), art. No. 14264. |
| [47] |
T. Putjuso, S. Putjuso, A. Karaphun, P. Moontragoon, I. Kotutha, and E. Swatsitang, Influence of Co doping on phase, structure and electrochemical properties of hydrothermally obtained CoxZn1−xFe2O4 (x = 0.0–0.4) nanoparticles, Sci. Rep., 13(2023), art. No. 2531. |
| [48] |
|
| [49] |
J. Khajonrit, N. Prasoetsopha, T. Sinprachim, P. Kidkhunthod, S. Pinitsoontorn, and S. Maensiri, Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 8(2017), No. 1, art. No. 015010. |
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
A. George, S. Rahul, A. Dhayal Raj, Q.Q. Yang, C. Sridevi, and J. Madona, Surfactant-assisted hydrothermal synthesis of FeVO4 nanoparticles for supercapacitor applications, Can. J. Chem., (2024). DOI: https://doi.org/10.1139/cjc-2024-0080 |
| [54] |
|
University of Science and Technology Beijing
/
| 〈 |
|
〉 |