Effects of calcium–magnesium–alumina–silicate and NaCl melting sequence on corrosion resistance of thermal barrier coatings

Yang Feng , Yong Shang , Chun Li , Xiao Zhang , Yanling Pei , Shengkai Gong , Huibin Xu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (7) : 1628 -1640.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (7) : 1628 -1640. DOI: 10.1007/s12613-024-3017-2
Research Article
research-article

Effects of calcium–magnesium–alumina–silicate and NaCl melting sequence on corrosion resistance of thermal barrier coatings

Author information +
History +
PDF

Abstract

Calcium–magnesium–alumina–silicate (CMAS) and/or molten salt corrosion have attracted increased attention, which is an important cause of thermal barrier coating (TBC) failure. In this study, the effect of CMAS and NaCl melting sequence on the corrosion mechanisms of yttria-stabilized zirconia (YSZ) TBCs was revealed through experiments and finite element simulations. The YSZ TBCs were prepared via atmospheric plasma spraying. Subsequently, the CMAS and NaCl corrosion experiments of the TBCs were conducted at 1250°C. Results indicated that the melting sequence of CMAS and NaCl could influence the TBC failure mode. The coating failure modes after CMAS + NaCl mixed corrosion and NaCl melting followed by CMAS melting were buckling failures. Conversely, the coating failure mode was observed to be spalling failures. This study provides data support for the optimization of TBC systems in complex corrosive environments.

Keywords

thermal barrier coatings / CMAS + NaCl / corrosion mechanism / buckling failure / spalling failure

Cite this article

Download citation ▾
Yang Feng, Yong Shang, Chun Li, Xiao Zhang, Yanling Pei, Shengkai Gong, Huibin Xu. Effects of calcium–magnesium–alumina–silicate and NaCl melting sequence on corrosion resistance of thermal barrier coatings. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(7): 1628-1640 DOI:10.1007/s12613-024-3017-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KirbiyikF, GokMG, GollerGPaksereshtA, MosasKKA. Recent developments on Al2O3-based thermal barrier coatings. Ceramic Coatings for High-temperature Environments, 2023, Cham. Springer. 125

[2]

A.H. Esmaeilkhanian, F. Sharifianjazi, E. Ahmadi, et al., Thermal barrier coating with improved durability: An overview of doped, nanostructured, multilayered, and gradient-structured zirconia-based thermal barrier coatings, Mater. Today Commun, 37(2023), art. No. 107514.

[3]

BaskaranT, AryaSB. Hot corrosion resistance of air plasma sprayed ceramic Sm2SrAl2O7 (SSA) thermal barrier coatings in simulated gas turbine environments. Ceram. Int., 2018, 441517695.

[4]

PengZJ, WangYH, WangSQ, et al.. Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review. Int. J. Miner. Metall. Mater., 2024, 3151147.

[5]

KimJ, DunnMG, BaranAJ, WadeDP, TrembaEL. Deposition of volcanic materials in the hot sections of two gas turbine engines. J. Eng. Gas Turbines Power, 1993, 1153641.

[6]

StottFH, de WetDJ, TaylorR. Degradation of thermal-barrier coatings at very high temperatures. MRS Bull., 1994, 191046.

[7]

OkawaA, NguyenST, NakayamaT, et al.. High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash. Int. J. Miner. Metall. Mater., 2024, 3171628.

[8]

WuJ, GuoHB, GaoYZ, GongSK. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J. Eur. Ceram. Soc., 2011, 31101881.

[9]

DrexlerJM, ChenCH, GledhillAD, ShinodaK, SampathS, PadtureNP. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf. Coat. Technol., 2012, 20619–203911.

[10]

SuLC, YiCH. Effects of CMAS penetration on the delamination cracks in EB–PVD thermal barrier coatings with curved interface. Ceram. Int., 2017, 43128893.

[11]

KrauseAR, SenturkBS, GarcesHF, et al.. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: Part I, Optical basicity considerations and processing. J. Am. Ceram. Soc., 2014, 97123943.

[12]

YaoY, WuD, ZhaoXF, YangF. Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2–YO1.5–TaO2.5 thermal barrier coatings. Int. J. Miner. Metall. Mater., 2022, 29122189.

[13]

X. Shan, W.F. Chen, L.X. Yang, F.W. Guo, X.F. Zhao, and P. Xiao, Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack, Corros. Sci., 167(2020), art. No. 108478.

[14]

Y. Sun, X.X. Nie, C.Y. Cai, L. Yang, and Y.C. Zhou, Phase transformation failure in YSZ TBCs induced by component-dependent CMAS corrosion, Surf. Coat. Technol., 464(2023), art. No. 129547.

[15]

FanJF, LiuG, ZhuoXS, et al.. In-situ reaction synthesis Al2O3 overlay modified 7YSZ TBC for NaCl hot corrosion. Ceram. Int., 2021, 471622404.

[16]

DanekGJ. State-of-the-art survey on hot corrosion in marine gas turbine engines. Nav. Eng. J., 1965, 776859.

[17]

Y. Luo, L. Yang, Z. Li, F.G. Li, W. Zhu, and C. Luo, Failure behavior study of EB–PVD TBCs under salt spray corrosion and thermal shock cycles, Mater. Res. Express, 8(2021), No. 9, art. No. 096404.

[18]

LiuY, XieM, LiRY, et al.. Failure analysis of EB–PVD LaZrCeO/YSZ TBCs exposed to molten NaCl in thermal cycling. Ceram. Int., 2022, 482132444.

[19]

Y. Liu, M. Xie, R.Y. Li, et al., Failure analysis of thermal corrosion cycling of EB–PVD YSZ thermal barrier coatings exposed to molten NaCl, Coatings, 12(2022), No. 8, art. No. 1065.

[20]

FaucettDC, ChoiSR. Strength degradation of oxide/oxide and SiC/SiC ceramic matrix composites in CMAS and CMAS/salt exposures. ASME Turbo Expo 2011: Turbine Technical Conference and Exposition, 2012497

[21]

ChoiSR, FaucettDC. Combined effects of CMAS and FOD in ceramic matrix composites. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2013493

[22]

ShiflerDA. Hot corrosion: A modification of reactants causing degradation. Mater. High Temp., 2018, 351–3225.

[23]

ShiflerDA, ChoiSR. CMAS effects on ship gas-turbine components/materials. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018

[24]

L. Guo, H. Xin, and C.W. Hu, Comparison of NaVO3 + CMAS mixture and CMAS corrosion to thermal barrier coatings, Corros. Sci., 177(2020), art. No. 108968.

[25]

ZhangXM, YuY, SunJY, XinH, YeFX, GuoL. Crystallization behavior of CMAS and NaVO3 + CMAS mixture and its potential effect to thermal barrier coatings corrosion. Ceram. Int., 2021, 472231868.

[26]

L. Guo, X.M. Zhang, and H. Xin, Corrosiveness of CMAS and CMAS + salt (NaVO3, Na2SO4 and NaCl) to YSZ thermal barrier coating materials, Corros. Sci., 209(2022), art. No. 110738.

[27]

ZhangB, YuY, GuoL, et al.. Microstructure evolution of CMAS glass below melting temperature and its potential influence on thermal barrier coatings. Ceram. Int., 2022, 482232877.

[28]

H.J. Fang, P. Zhou, Y.X. Wang, C.Q. Di, and J.B. Pu, Research on aggressiveness of CMAS + NaVO3 mixtures towards thermal barrier coatings from the perspective of physical and chemical characteristics, Corros. Sci., 223(2023), art. No. 111463.

[29]

L. Guo, X.M. Zhang, M.G. Liu, S. Yang, and J.W. Dai, CMAS + sea salt corrosion to thermal barrier coatings, Corros. Sci., 218(2023), art. No. 111172.

[30]

L. Guo, J.Y. Feng, and S.J. Meng, Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS + NaVO3 and CMAS, Corros. Sci., 208(2022), art. No. 110628.

[31]

GokMG, GollerG. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS + hot corrosion test. J. Eur. Ceram. Soc., 2017, 3762501.

[32]

LiBW, WuJ, HeXB, WangB, GuoL. Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack. Ceram. Int., 2022, 48811662.

[33]

F. Kirbiyik, M.G. Gok, and G. Goller, Application of thermal gradient and thermal cycling tests to Al2O3/CYSZ functionally graded TBC in the presence of simultaneous hot corrosion and CMAS effects, Surf. Coat. Technol., 444(2022), art. No. 128688.

[34]

Y.A. Zhang, J.S. Han, D.T. Wu, and Y. Zou, Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings, Corros. Sci., 221(2023), art. No. 111369.

[35]

ShuCX, WangJS, LuXJ, et al.. Investigation of corrosion resistance of YSZ coating with sacrificial aluminum oxide protective layer against CMAS and composite corrosives. J. Eur. Ceram. Soc., 2024, 4442537.

[36]

Y.A. Zhang, M.F. Dou, W. Gao, J.S. Han, D.T. Wu, and Y. Zou, Wetting kinetics and corrosion of CMAS and CMAS–NaCl to plasma-sprayed YSZ and Al2O3–YSZ thermal barrier coatings, Corros. Sci., 232(2024), art. No. 112048.

[37]

M.M. Wu, Y. Liu, W.W. Qu, et al., Thickness-related failure behaviors of the thermal barrier coatings under thermal gradient cycling, Surf. Coat. Technol., 468(2023), art. No. 129748.

[38]

FengY, DongTS, FuBG, LiGL, LiuQ, WangR. Thermal shock resistance of double-layer thermal barrier coatings. J. Mater. Res., 2020, 35202808.

[39]

Y. Feng, T.S. Dong, G.L. Li, et al., The roles of stress in the thermal shock failure of YSZ TBCs before and after laser remelting, J. Alloy. Compd., 828(2020), art. No. 154417.

[40]

ZhangZF, HanYD, WangWZ, CaiZW. Interface failure analysis of thermal barrier coatings under CMAS penetration. J. Aerosp. Power, 2021, 3681702

[41]

RobieRA, HemingwayBS, WilsonWH. Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Am. Mineral., 1978, 631–2109

[42]

KuramaS, OzelE. The influence of different CaO source in the production of anorthite ceramics. Ceram. Int., 2009, 352827.

[43]

KimES, YeoWJ. Effect of crystallization on thermal properties of (1−x)CaAl2Si2O8−xCaMgSi2O6. Integr. Ferroelectr., 2010, 1141127.

[44]

WuLH, LiCW, LiH, LiSB, WangCG. Microstructure and properties of porous anorthite/mullite whiskers ceramics with high porosity. Int. J. Appl. Ceram. Technol., 2020, 1752104.

[45]

MaedaK, OkumaG, YoshidaS, et al.. Indentation-induced ductile behavior of glass-ceramics involving layered aluminosilicates. J. Am. Ceram. Soc., 2023, 106127440.

[46]

KlemmeS, AhrensM. Low-temperature heat capacities of MgAl2O4 and spinels of the MgCr2O4–MgAl2O4 solid solution. Phys. Chem. Miner., 2007, 34259.

[47]

GaneshI. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev., 2013, 58263.

[48]

NiCM, FanHW, WangXD, YaoM. Thermal conductivity prediction of MgAl2O4: A non-equilibrium molecular dynamics calculation. J. Iron Steel Res. Int., 2020, 275500.

[49]

C.G. Liu, Y.X. Lu, Q. Peng, et al., The effect of Sr doping on the structural, mechanical, electronic properties and radiation tolerance of MgAl2O4 spinel: A first-principles study, J. Alloy. Compd., 889(2021), art. No. 161614.

[50]

L.H. Liu and K. Morita, Fabrication of MgAl2O4/Al2O3 laminated transparent composite by spark–plasma–sintering (SPS) processing, Scripta Mater., 205(2021), art. No. 114205.

[51]

GajdowskiC, D’EliaR, FaderlN, et al.. Mechanical and optical properties of MgAl2O4 ceramics and ballistic efficiency of spinel based armour. Ceram. Int., 2022, 481318199.

[52]

PoerschkeDL, JacksonRW, LeviCG. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions. Annu. Rev. Mater. Res., 2017, 47297.

[53]

ZhangGH, FanXL, XuR, SuLC, WangTJ. Transient thermal stress due to the penetration of calcium–magnesium–alumino–silicate in EB–PVD thermal barrier coating system. Ceram. Int., 2018, 441112655.

[54]

X.P. Hu, G.L. Liu, Q. Liu, W. Zhu, S. Liu, and Z.S. Ma, Failure mechanism of EB–PVD thermal barrier coatings under the synergistic effect of thermal shock and CMAS corrosion, Coatings, 12(2022), No. 9, art. No. 1290.

[55]

KrauseAR, GarcesHF, PadtureNP. High-temperature interactions between yttria-stabilized zirconia thermal barrier coatings and Na-rich calcia–magnesia–aluminosilicate deposits. Ceram. Int., 2021, 471419505.

[56]

SatpathyR, RaniS, AlamZ, BesraL. Effectiveness of lanthanum zirconate and yttria stabilised zirconia freestanding APS thermal barrier coatings against natural CMAS attack at high temperatures. Mater. High Temp., 2020, 376416.

[57]

Muñoz TabaresJA, AngladaMJ. Quantitative analysis of monoclinic phase in 3Y-TZP by Raman spectroscopy. J. Am. Ceram. Soc., 2010, 9361790.

[58]

CaiHY, ShanX, LuJ, et al.. The crack behavior and delamination mechanisms of air plasma sprayed thermal barrier coatings under ultrasonic plasma jet at 1600°C. J. Eur. Ceram. Soc., 2023, 4394136.

[59]

DuffyJA. Acid–base reactions of transition metal oxides in the solid state. J. Am. Ceram. Soc., 1997, 8061416.

[60]

LiaoYX, DaiYF, ZhaiYF, HeAP, HeH, LiangTQ. The corrosion behavior of Sc2O3–Y2O3 co-doped ZrO2 influenced by Sc2O3 content in CMAS at 1300°C. J. Eur. Ceram. Soc., 2024, 4421179.

[61]

CraigM, NdamkaNL, WellmanRG, NichollsJR. CMAS degradation of EB–PVD TBCs: The effect of basicity. Surf. Coat. Technol., 2015, 270145.

[62]

VaßenR, BakanE, MackD, et al.. Performance of YSZ and Gd2Zr2O7/YSZ double layer thermal barrier coatings in burner rig tests. J. Eur. Ceram. Soc., 2020, 402480.

[63]

VaßenR, MackDE, TandlerM, SohnYJ, SeboldD, GuillonO. Unique performance of thermal barrier coatings made of yttria-stabilized zirconia at extreme temperatures (>1500°C). J. Am. Ceram. Soc., 2021, 1041463.

[64]

W. Liu, Y.G. Liu, W.Z. Wang, et al., Damage grading evaluation of thermal barrier coatings under CMAS corrosion, Coatings, 13(2023), No. 9, art. No. 1495.

[65]

SeokSH, JungSM, LeeYS, MinDJ. Viscosity of highly basic slags. ISIJ Int., 2007, 4781090.

[66]

NaraparajuR, MechnichP, SchulzU, RodriguezGCM. The accelerating effect of CaSO4 within CMAS (CaO–MgO–Al2O3–SiO2) and its effect on the infiltration behavior in EB–PVD 7YSZ. J. Am. Ceram. Soc., 2016, 9941398.

[67]

GiordanoD, RussellJK, DingwellDB. Viscosity of magmatic liquids: A model. Earth Planet. Sci. Lett., 2008, 2711–4123.

[68]

A. Herrmann, A.A. Assadi, R. Lachheb, et al., The effect of glass structure and local rare earth site symmetry on the optical properties of rare earth doped alkaline earth aluminosilicate glasses, Acta Mater., 249(2023), art. No. 118811.

[69]

MorettiR. Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Ann. Geophys., 2005, 484–5583

[70]

LiangYJ, CheYCPractical Inorganic Thermodynamic Data Handbook, 1993, Beijing. Place Metallurgical Industry Press.

[71]

H.F. Garces, A. Tran, H. Sternlicht, et al., Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats, Surf. Coat. Technol., 404(2020), art. No. 126459.

[72]

Y. Feng, T.S. Dong, G.L. Li, R. Wang, X.W. Zhao, and Q. Liu, High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings, J. Alloy. Compd., 828(2020), art. No. 154266.

[73]

A. Mortazavi, Y. Zhao, M. Esmaily, A. Allanore, J. Vidal, and N. Birbilis, High-temperature corrosion of a nickel-based alloy in a molten chloride environment–The effect of thermal and chemical purifications, Sol. Energy Mater. Sol. Cells, 236(2022), art. No. 111542.

[74]

H. Moriwake, I. Tanaka, F. Oba, Y. Koyama, and H. Adachi, Formation energy of Cr/Al vacancies in spinel MgCr2O4 and MgAl2O4 by first-principles calculations, Phys. Rev. B., 65(2002), No. 15, art. No. 153103.

[75]

MoriwakeH, TanakaI, ObaF, KoyamaY, AdachiH. First principles calculations of the formation energy of Cr/Al vacancies in spinel-type MgCr2O4 and MgAl2O4. Int. J. Quantum Chem., 2003, 912208.

[76]

H. Moriwake, S. Watanabe, and K. Ogasawara, Theoretical and experimental consideration of valence band X-ray photoelectron spectroscopy spectra of Cr-deficient MgCr2−x,O4, Jpn. J. Appl. Phys., 46(2007), No. 7R, art. No. 4175.

[77]

HuZC, WangL, ZhuangMX, et al.. Influence of internal oxidation of the bond-coat on the residual stress around the TGO and failure modes of the APS–TBCs: A finite element simulation study. Ceram. Int., 2021, 4745364.

[78]

R.I. Webster, N.P. Bansal, J.A. Salem, E.J. Opila, and V.L. Wiesner, Characterization of thermochemical and thermomechanical properties of Eyjafjallajökull volcanic ash glass, Coatings, 10(2020), No. 2, art. No. 100.

[79]

J. Elms, A. Pawley, N. Bojdo, M. Jones, and R. Clarkson, Formation of high-temperature minerals from an evaporite-rich dust in gas turbine engine ingestion tests, J. Turbomach., 143(2021), No. 6, art. No. 061003.

[80]

W.W. Qu, Z.H. Chen, S.S. Li, M.M. Wu, Y.L. Pei, and S.K. Gong, Failure mechanism of YSZ coatings prepared by EB–PVD under partial penetration of CMAS attacking, Corros. Sci., 203(2022), art. No. 110339.

[81]

ZhouWY, QiSH, TuCC, ZhaoHZ, WangCF, KouJL. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J. Appl. Polym. Sci., 2007, 10421312.77.

[82]

Ghasemi-KahrizsangiS, DehsheikhHG, BoroujerdniaM. MgO–CaO–Cr2O3 composition as a novel refractory brick: Use of Cr2O3 nanoparticles. Bol. Soc. Esp. Cerm. Vidrio, 2017, 56283.

[83]

GanMD, ChongXY, YuW, XiaoB, FengJ. Understanding the ultralow lattice thermal conductivity of monoclinic RETaO4 from acoustic-optical phonon anti-crossing property and a comparison with ZrO2. J. Am. Ceram. Soc., 2023, 10653103.

[84]

ChangHL, CaiCY, WangYG, ZhouYC, YangL, ZhouGW. Calcium-rich CMAS corrosion induced microstructure development of thermal barrier coatings. Surf. Coat. Technol., 2017, 324577.

[85]

MorozovaLV, PopovVP. Synthesis and investigation of magnesium chromium spinel. Glass Phys. Chem., 2010, 36186.

[86]

StefanovichEV, ShlugerAL, CatlowCR. Theoretical study of the stabilization of cubic-phase ZrO2 by impurities. Phys. Rev. B: Condens. Matter, 1994, 491711560.

[87]

NettarCB, BhowmikRN, SinhaAK. A comparative study of the lattice structure, optical band gap, electrical conductivity and polarization at different stages of the heat treatment of chemical routed Al(OH)3. Ceram. Int., 2022, 48810677.

[88]

HsuehCH, LuttrellCR, LeeS, WuTC, LinHY. Interfacial peeling moments and shear forces at free edges of multilayers subjected to thermal stresses. J. Am. Ceram. Soc., 2006, 8951632.

[89]

C. Chiu, S. Tseng, C. Chao, X.L. Fan, and W. Cheng, Interfacial stresses of thermal barrier coating with film cooling holes induced by CMAS infiltration, Coatings, 12(2022), No. 3, art. No. 326.

[90]

ZhouSB, WuJT, DengWL, YueZF. Analytic research on interface stress of EB–PVD thermal barrier coatings. Surf. Technol., 2020, 493189

[91]

GuoD, YuQM, CenL. Effect of CMAS on interfacial crack and residual stress of thermal barrier coatings. Rare Met. Mater. Eng., 2020, 4992937

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/