La-substituted W-type barium–nickel ferrites for tunable and high-performance electromagnetic wave absorption

Long Wang , Jiurong Liu , Shenghui Xie , Yanli Deng , Zhou Wang , Shanyue Hou , Shengying Yue , Gang Wang , Na Wu , Zhihui Zeng

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 645 -656.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 645 -656. DOI: 10.1007/s12613-024-3013-6
Research Article

La-substituted W-type barium–nickel ferrites for tunable and high-performance electromagnetic wave absorption

Author information +
History +
PDF

Abstract

W-type barium–nickel ferrite (BaNi2Fe16O27) is a highly promising material for electromagnetic wave (EMW) absorption because of its magnetic loss capability for EMW, low cost, large-scale production potential, high-temperature resistance, and excellent chemical stability. However, the poor dielectric loss of magnetic ferrites hampers their utilization, hindering enhancement in their EMW-absorption performance. Developing efficient strategies that improve the EMW-absorption performance of ferrite is highly desired but remains challenging. Here, an efficient strategy substituting Ba2+ with rare earth La3+ in W-type ferrite was proposed for the preparation of novel La-substituted ferrites (Ba1−xLa xNi2Fe15.4O27). The influences of La3+ substitution on ferrites’ EMW-absorption performance and the dissipative mechanism toward EMW were systematically explored and discussed. La3+ efficiently induced lattice defects, enhanced defect-induced polarization, and slightly reduced the ferrites’ bandgap, enhancing the dielectric properties of the ferrites. La3+ also enhanced the ferromagnetic resonance loss and strengthened magnetic properties. These effects considerably improved the EMW-absorption performance of Ba1−xLa xNi2Fe15.4O27 compared with pure W-type ferrites. When x = 0.2, the best EMW-absorption performance was achieved with a minimum reflection loss of −55.6 dB and effective absorption bandwidth (EAB) of 3.44 GHz.

Cite this article

Download citation ▾
Long Wang, Jiurong Liu, Shenghui Xie, Yanli Deng, Zhou Wang, Shanyue Hou, Shengying Yue, Gang Wang, Na Wu, Zhihui Zeng. La-substituted W-type barium–nickel ferrites for tunable and high-performance electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 645-656 DOI:10.1007/s12613-024-3013-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. An, D.W. Li, W.H. Liao, et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures, Adv. Mater., 35(2023), No. 26, art. No. 2300659.

[2]

Xu J, Shu RW, Wan ZL, Shi JJ. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 132: 193.

[3]

Wang YC, Yao LH, Zheng Q, Cao MS. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., 2022, 15(7): 6751.

[4]

Y.L. Zhang and J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites, Nano-Micro Lett., 14(2022), art. No. 89.

[5]

Mao D, Zhang Z, Yang M, Wang ZM, Yu RB, Wang D. Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. Int. J. Miner. Metall. Mater., 2023, 30(3): 581.

[6]

Li QY, Lu YH, Shao ZY. Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber. Int. J. Miner. Metall. Mater., 2023, 30(3): 548.

[7]

Du SM, Chen HY, Hong RY. Preparation and electromagnetic properties characterization of reduced graphene oxide/strontium hexaferrite nanocomposites. Nanotechnol. Rev., 2020, 9(1): 105.

[8]

M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. 2105553.

[9]

J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), art. No. 175.

[10]

Cheng JB, Zhao HB, Zhang AN, Wang YQ, Wang YZ. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. J. Mater. Sci. Technol., 2022, 126: 266.

[11]

Meng FB, Wang HG, Huang F, et al.. Graphene-based microwave absorbing composites: A review and prospective. Composites Part B, 2018, 137: 260.

[12]

Wen JH, Lan D, Wang YQ, et al.. Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater., 2024, 31(7): 1701.

[13]

Zhang SJ, Lan D, Zheng JJ, et al.. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2024, 31(12): 2749.

[14]

Xie XB, Wang HS, Kimura H, Ni C, Du W, Wu GL. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2024, 31(10): 2274.

[15]

V.S.R. Raju, Ultra-high frequency electromagnetic waves absorption of NiCoCuZn ferrites, IEEE Trans. Magn., 58(2022), No. 8, art. No. 2800907.

[16]

Z.W. Ye, K.J. Wang, X.Q. Li, and J.J. Yang, Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials, J. Alloys Compd., 893(2022), art. No. 162396.

[17]

S.B. Narang and K. Pubby, Nickel spinel ferrites: A review, J. Magn. Magn. Mater., 519(2021), art. No. 167163.

[18]

S.C. Tolani, A.R. Golhar, and K.G. Rewatkar, A review of morphological, structural behaviour and technological applications of ferrites, AIP Conf. Proc., 2104(2019), No. 1, art. No. 030032.

[19]

Zheng BZ, Fan JY, Chen B, et al.. Rare-earth doping in nanostructured inorganic materials. Chem. Rev., 2022, 122(6): 5519.

[20]

Tanbir K, Ghosh MP, Singh R, Kar M, Mukherjee S. Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci., 2020, 31: 435

[21]

Tahar LB, Artus M, Ammar S, et al.. Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn. Magn. Mater., 2008, 320: 3242.

[22]

Yousaf M, Nazir S, Akbar M, et al.. Structural, magnetic, and electrical evaluations of rare earth Gd3+ doped in mixed Co–Mn spinel ferrite nanoparticles. Ceram. Int., 2022, 48(1): 578.

[23]

Qian K, Yao ZJ, Lin HY, et al.. The influence of Nd substitution in Ni–Zn ferrites for the improved microwave absorption properties. Ceram. Int., 2020, 46(1): 227.

[24]

Kaur H, Singh C, Marwaha A, et al.. Elucidation of microwave absorption mechanisms in Co–Ga substituted Ba–Sr hexaferrites in X-band. J. Mater. Sci., 2018, 29(17): 14995

[25]

Huang XG, Chen J, Wang LX, Zhang QT. Electromagnetic and microwave absorbing properties of W-type barium ferrite doped with Gd3+. Rare Met., 2011, 30(1): 44.

[26]

Mang CY, Ma ZJ, Luo J, Rao MJ, Zhang X, Peng ZW. Electromagnetic wave absorption properties of cobalt–zinc ferrite nanoparticles doped with rare earth elements. J. Rare Earths, 2021, 39(11): 1415.

[27]

V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033.

[28]

B. Gao, L.Y. Li, Z.W. Chen, and Q. Xu, Pressure coupled lanthanide ion doping to enhance optical properties in BaTiO3, Small, 20(2024), No. 13, art. No. 2308427.

[29]

Cheng FX, Jia JT, Xu ZG, et al.. Microstructure, magnetic, and magneto-optical properties of chemical synthesized Co–RE (RE = Ho, Er, Tm, Yb, Lu) ferrite nanocrystalline films. J. Appl. Phys., 1999, 86(5): 2727.

[30]

Muralidhar M, Chauhan HS, Saitoh T, Kamada K, Segawa K, Murakami M. Effect of mixing three rare-earth elements on the superconducting properties of REBa2Cu3Oy. Supercond. Sci. Technol., 1997, 10(9): 663.

[31]

Liu ZQ, Peng ZJ, Lv CC, Fu XL. Doping effect of Sm3+ on magnetic and dielectric properties of Ni–Zn ferrites. Ceram. Int., 2017, 43(1): 1449.

[32]

Jiang RL, Chen WL, Zhang ZX, Sun Q, Yin WX. Preparation, characterization and magnetic properties of ferrite nanocrystals doped with dysprosium. Acta Chim. Sin., 2008, 66(11): 1322

[33]

Yuan HR, Yan F, Li CY, Zhu CL, Zhang XT, Chen YJ. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces, 2018, 10(1): 1399.

[34]

Yu LY, Lan D, Guo ZQ, et al.. Multi-level hollow sphere rich in heterojunctions with dual function: Efficient microwave absorption and antiseptic. J. Mater. Sci. Technol., 2024, 189: 155.

[35]

Li JJ, Lan D, Cheng YH, et al.. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: An effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol., 2024, 196: 60.

[36]

Ding Y, Zhang Z, Luo BH, et al.. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res., 2017, 10(3): 980.

[37]

Quan B, Xu GY, Li DR, Liu W, Ji GB, Du YW. Incorporation of dielectric constituents to construct ternary heterojunction structures for high-efficiency electromagnetic response. J. Colloid Interface Sci., 2017, 498: 161.

[38]

Shu RW, Zhang GY, Wang X, et al.. Fabrication of 3D netlike MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J., 2018, 337: 242.

[39]

S. Gao, G.S. Wang, L. Guo, and S.H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides, Small, 16(2020), No. 19, art. No. 1906668.

[40]

Zong M, Huang Y, Zhang N. Reduced graphene oxide–CoFe2O4 composite: Synthesis and electromagnetic absorption properties. Appl. Surf. Sci., 2015, 345: 272.

[41]

Deng LW, Ding L, Zhou KS, Huang SX, Hu ZW, Yang BC. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J. Magn. Magn. Mater., 2011, 323(14): 1895.

[42]

Li GM, Zhu BS, Liang LP, Tian YM, BL, Wang LC. Core–shell Co3Fe7@C composite as efficient microwave absorbent. Acta Phys. Chim. Sin., 2017, 33(8): 1715

[43]

Guo FY, Ji GJ, Xu JJ, Zou HF, Gan SC, Xu XC. Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm) particles. J. Magn. Magn. Mater., 2012, 324(6): 1209.

[44]

Thakur A, Barman PB, Singh RR. Effects of La3+–Nd3+ ions and pre-calcination on the growth of hexaferrite nanoparticles prepared by gel to crystallization technique: Non-isothermal crystallization kinetics analysis. Mater. Chem. Phys., 2015, 156: 29.

[45]

Wu YP, Ong CK, Lin GQ, Li ZW. Improved microwave magnetic and attenuation properties due to the dopant V2O5 in W-type barium ferrites. J. Phys. D: Appl. Phys., 2006, 39(14): 2915.

[46]

S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707.

[47]

Z.G. Gao, D. Lan, X.Y. Ren, Z.R. Jia, and G.L. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites, Compos. Commun., 48(2024), art. No. 101922.

[48]

Feng AL, Lan D, Liu JK, Wu GL, Jia ZR. Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol., 2024, 180: 1.

[49]

Ahmed MA, Okasha N, Kershi RM. Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite. J. Magn. Magn. Mater., 2008, 320(6): 1146.

[50]

Verma A, Dube DC. Processing of nickel–zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc., 2005, 88(3): 519.

[51]

Huang K, Liu XS, Feng SJ, et al.. Structural and magnetic properties of La-substituted strontium W-type hexagonal hexaferrites. Mater. Technol., 2016, 31(10): 590.

[52]

N.N. Wu, C. Liu, D.M. Xu, et al., Correction to “enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers”, ACS Sustainable Chem. Eng., 9(2021), No. 37, art. No. 12718.

[53]

Li YY, Gai LX, Song GL, An QD, Xiao ZY, Zhai SR. Enhanced properties of CoS2/Cu2S embedded N/S co-doped mesh-like carbonaceous composites for electromagnetic wave absorption. Carbon, 2022, 186: 238.

[54]

Wu HJ, Zhao ZH, Wu GL. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J. Colloid Interface Sci., 2020, 566: 21.

[55]

Z.J. Li, L.M. Zhang, and H.J. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption, Small, 20(2024), No. 11, art. No. 2305120.

[56]

Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499.

[57]

Z.R. Jia, J.K. Liu, Z.G. Gao, C.H. Zhang, and G.L. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers, Adv. Funct. Mater., (2024), art. No. 2405523.

[58]

Wang YP, Li LC, Liu H, Qiu HZ, Xu F. Magnetic properties and microstructure of La-substituted BaCr-ferrite powders. Mater. Lett., 2008, 62(14): 2060.

[59]

Liu LY, Shu SM, Zhang GZ, Liu ST. Highly selective sensing of C2H6O, HCHO, and C3H6O gases by controlling SnO2 nanoparticle vacancies. ACS Appl. Nano Mater., 2018, 1(1): 31.

[60]

Bai TT, Guo Y, Liu H, et al.. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C, 2020, 8(15): 5191.

[61]

X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass, Compos. Commun., 21(2020), art. No. 100404.

[62]

Liu PJ, Yao ZJ, Zhou JT. Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites covered with reduced graphene oxide. Rsc Adv., 2015, 5(114): 93739.

[63]

Fan LN, Zheng H, Zhou XH. A comparative study of microstructure, magnetic, and electromagnetic properties of Zn2W hexaferrite prepared by sol–gel and solid-state reaction methods. J. Sol-Gel Sci. Technol., 2020, 96(3): 604.

[64]

C.C. Hu, T. Jiang, Q. Qian, C.Y. Liu, F. Wu, and G.B. Ji, Rare earth Nd3+ ions-doped W-type barium ferrite for efficient microwave absorption and its optimization mechanism, J. Mater. Sci., 34(2023), No. 36, art. No. 2295.

[65]

Wang LX, Song J, Zhang QT, Huang XG, Xu NC. The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27. J. Alloys Compd., 2009, 481(1–2): 863.

[66]

Toepfer J, Seifert D, Breton JML, et al.. Hexagonal ferrites of X-, W-, and M-type in the system Sr–Fe–O: A comparative study. J. Solid State Chem., 2015, 226: 133.

[67]

Zhao B, Guo XQ, Zhao WY, et al.. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces, 2016, 8(42): 28917.

[68]

J. Qiao, X. Zhang, C. Liu, et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption, Nano-Micro Lett., 13(2021), art. No. 75.

[69]

Zhang X, Qao J, Zhao JB, et al.. High-efficiency electromagnetic wave absorption of cobalt decorated NH2-UIO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces, 2019, 11(39): 35959.

[70]

K.L. Fu, J.B. Zhao, F. Liu, et al., Enhanced electromagnetic wave absorption of nitrogen-doped reduced graphene oxide aerogels with LaFeO3 cluster modifications, Carbon, 210(2023), art. No. 118071.

[71]

X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber, Composites Part B, 192(2020), art. No. 107980.

[72]

K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites, Jpn. J. Appl. Phys., 10(1971), No. 11, art. No. 1520.

[73]

Kim JS, Lee JH, Lim YS, Jang JW, Kim IT. Revisit to the anomaly in dielectric properties of (Ba1−xSrx)(Zn1/3 Nb2/3)O3 solid solution system. Jpn. J. Appl. Phys., 1997, 36(9R): 5558.

[74]

Wang XX, Ma T, Shu JC, Cao MS. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J., 2018, 332: 321.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/