Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics

Xunlei Chen , Lin Chen , Jiang Tian , Cheng Xu , Jiaxin Liao , Tianyu Li , Jiankun Wang , Jing Feng

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1441 -1450.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1441 -1450. DOI: 10.1007/s12613-024-3005-6
Research Article

Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics

Author information +
History +
PDF

Abstract

Thermal and mechanical properties of yttrium tantalate (YTaO4), a top coat ceramic of thermal barrier coatings (TBCs) for aeroengines, are enhanced by synthesizing Y1−xTa1−xM2xO4 (M = Ti, Zr, Hf; x = 0.06, 0.12, 0.18, 0.24) medium-entropy ceramics (MECs) using a two-step sintering method. In addition, the thermal conductivity, thermal expansion coefficients (TECs), and fracture toughness of MECs were investigated. An X-ray diffraction study revealed that the Y1−xTa1−xM2xO4 MECs were monoclinic, and the Ti, Zr, and Hf doping elements replaced Y and Ta. The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions, resulting in improving the phonon scattering and reduced thermal conductivity, with Y1−xTa1−xM2xO4 MECs (x = 0.24) exhibiting the lowest thermal conductivity of 1.23 W·m−1·K−1 at 900°C. The introduction of MO2 increased the configurational entropy and weakened the ionic bonding energy, obtaining high TECs (10.4 × 10−6 K−1 at 1400°C). The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier. Moreover, microcracks and crack extension toughening endowed Y1−xTa1−xM2xO4 MECs (x = 0.24) with the highest fracture toughness of (4.1 ± 0.5) MPa·m1/2. The simultaneous improvement of the thermal and mechanical properties of the MO2 (M = Ti, Zr, Hf) co-doped YTaO4 MECs can be extended to other materials.

Keywords

thermal barrier coatings / rare-earth tantalates / fracture toughness / middle-entropy ceramics

Cite this article

Download citation ▾
Xunlei Chen, Lin Chen, Jiang Tian, Cheng Xu, Jiaxin Liao, Tianyu Li, Jiankun Wang, Jing Feng. Thermal and mechanical properties of MO2 (M = Ti, Zr, Hf) co-doped YTaO4 medium-entropy ceramics. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(6): 1441-1450 DOI:10.1007/s12613-024-3005-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CaronP, KhanT. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp. Sci. Technol., 1999, 3(8): 513

[2]

ZhangWW, LiGR, ZhangQ, YangGJ. Comprehensive damage evaluation of localized spallation of thermal barrier coatings. J. Adv. Ceram., 2017, 6(3): 230

[3]

KaraoglanliAC, DolekerKM, DemirelB, TurkA, VarolR. Effect of shot peening on the oxidation behavior of thermal barrier coatings. Appl. Surf. Sci., 2015, 354: 314

[4]

ClarkeDR, LeviCG. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res., 2003, 33: 383

[5]

L. Chen, B.H. Li, and J. Feng, Rare-earth tantalates for next-generation thermal barrier coatings, Prog. Mater. Sci., 144(2024), art. No. 101265.

[6]

EvansAG, MummDR, HutchinsonJW, MeierGH, PettitFS. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci., 2001, 46(5): 505

[7]

WeiZY, MengGH, ChenL, et al.. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J. Adv. Ceram., 2022, 11(7): 985

[8]

J. Tian, L. Chen, X.L. Chen, et al., Regulation of crystal and microstructures of RETaO4 (RE = Nd, Sm, Gd, Ho, Er) powders synthesized via co-precipitation, J. Rare Earths, (2024). https://doi.org/10.1016/j.jre.2024.06.032

[9]

WangJK, ChenL, ZhangLY, GanMD, LiBH, FengJ. Y1/6Yb5/6TaO4/8YSZ composite ceramics with enhanced mechanical and thermal properties. J. Am. Ceram. Soc., 2024, 107(6): 3895

[10]

RenXR, PanW. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater., 2014, 69: 397

[11]

MercerC, WilliamsJR, ClarkeDR, EvansAG. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc. R. Soc. A., 2007, 463(2081): 1393

[12]

DengZY, ZhangXM, HaoGY, WeiCX, ZhuMY. Dissolution behavior of Al2O3 inclusions into CaO–MgO–SiO2–Al2O3–TiO2 system ladle slags. Int. J. Miner. Metall. Mater., 2024, 31(5): 977

[13]

BhattacharyaJ, der VenAV. Mechanical instabilities and structural phase transitions: The cubic to tetragonal transformation. Acta Mater., 2008, 56(16): 4226

[14]

SchellingPK, PhillpotSR, WolfD. Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J. Am. Ceram. Soc., 2001, 84(7): 1609

[15]

ClarkeDR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol., 2003, 163–164: 67

[16]

PengZJ, WangYH, WangSQ, et al.. Improvement strategy on thermophysical properties of A2B2O7-type rare earth zirconates for thermal barrier coatings applications: A review. Int. J. Miner. Metall. Mater., 2024, 31(5): 1147

[17]

ZhaoPS, ZhengHZ, LiGF, et al.. Mechanical properties, thermophysical properties and electronic structure of Yb3+ or Ce4+-doped La2Zr2O7-based TBCs. J. Rare Earths, 2023, 41(4): 588

[18]

P.J. Chen, P. Xiao, Z. Li, Y.C. Wang, X. Tang, and Y. Li, Water vapor corrosion behavior and failure mechanism of air sprayed bi-layer Yb2Si2O7/SiC and tri-layer Yb2Si2O7/(SiCw-Mullite)/SiC environmental barrier coating, Adv. Powder Mater., 2(2023), No. 1, art. No. 100064.

[19]

TianZL, ZhengLY, LiZJ, LiJL, WangJY. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J. Eur. Ceram. Soc., 2016, 36(11): 2813

[20]

DuAB, WanCL, QuZX, PanW. Thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc., 2009, 92(11): 2687

[21]

ZhangPX, WangEH, LiuJJ, YangT, WangHL, HouXM. Porous high-entropy rare-earth phosphate (REPO4, RE = La, Sm, Eu, Ce, Pr and Gd) ceramics with excellent thermal insulation performance via pore structure tailoring. Int. J. Miner. Metall. Mater., 2024, 31(7): 1651

[22]

WangYH, OuyangJH, WeiT, et al.. Mechanical properties, thermal conductivity and defect formation energies of samarium immobilization in Gd2Zr2O7: First-principles study and irradiation experiment. J. Rare Earths, 2023, 41(3): 422

[23]

SunZQ, ZhouYC, WangJY, LiMS. Thermal properties and thermal shock resistance of γ-Y2Si2O7. J. Am. Ceram. Soc., 2008, 91(8): 2623

[24]

J. Feng, S. Shian, B. Xiao, and D.R. Clarke, First-principles calculations of the high-temperature phase transformation in yttrium tantalate, Phys. Rev. B, 90(2014), No. 9, art. No. 094102.

[25]

L. Chen, M.Y. Hu, X.D. Zheng, and J. Feng, Characteristics of ferroelastic domains and thermal transport limits in HfO2 alloying YTaO4 ceramics, Acta Mater., 251(2023), art. No. 118870.

[26]

ChenL, HuMY, WuP, FengJ. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J. Am. Ceram. Soc., 2019, 102(8): 4809

[27]

M.D. Gan, X.Y. Chong, T.L. Lu, et al., Unveiling thermal stresses in RETaO4 (RE = Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) by first-principles calculations and finite element simulations, Acta Mater., 271(2024), art. No. 119904.

[28]

SuT, ChenL, QuCK, et al.. Determinations of Ce solid solution mechanism and limit thermal conductivity of YTaO4 ceramics. J. Eur. Ceram. Soc., 2023, 43(1): 150

[29]

LuoC, LiC, CaoK, et al.. Ferroelastic domain identification and toughening mechanism for yttrium tantalate-zirconium oxide. J. Mater. Sci. Technol., 2022, 127: 78

[30]

C.M. Rost, E. Sachet, T. Borman, et al., Entropy-stabilized oxides, Nat. Commun., 6(2015), art. No. 8485.

[31]

N. Dragoe, Entropy driven synthesis of new materials, Mater. Lab, 1(2022), No. 1, art. No. 220001.

[32]

QuCK, ChenL, SuT, LiDB, YangY, FengJ. Improved wear resistance and low thermal radiative conductivity of a middle-entropy tantalate Y0.5Gd0.5Ta0.5Nb0.5O4. J. Am. Ceram. Soc., 2023, 106(4): 2476

[33]

SchlichtingKW, PadtureNP, KlemensPG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci., 2001, 36(12): 3003

[34]

ChenL, LiBH, GuoJ, ZhuYK, FengJ. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings. J. Adv. Ceram., 2022, 11(4): 556

[35]

AnstisGR, ChantikulP, LawnBR, MarshallDB. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc., 1981, 64(9): 533

[36]

NiiharaK, MorenaR, HasselmanDPH. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett., 1982, 1(1): 13

[37]

ChenL, LuoKR, LiBH, HuMY, FengJ. Mechanical property enhancements and amorphous thermal transports of ordered weberite-type RE3Nb/TaO7 high-entropy oxides. J. Adv. Ceram., 2023, 12(2): 399

[38]

SanditovDS, BelomestnykhVN. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys., 2011, 56(11): 1619

[39]

L. Chen, M.Y. Hu, J.K. Wang, B.H. Li, and J. Feng, Dominant mechanisms of thermo-mechanical properties of weberite-type RE3TaO7 (RE=La, Pr, Nd, Eu, Gd, Dy) tantalates toward multifunctional thermal/environmental barrier coating applications, Acta Mater., 270(2024), art. No. 119857.

[40]

L. Chen, M.Y. Hu, and J. Feng, Defect-dominated phonon scattering processes and thermal transports of ferroelastic (Sm1−XY-bX)TaO4 solid solutions, Mater. Today Phys., 35(2023), art. No. 101118.

[41]

ZhaoM, PanW. Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2. Acta Mater., 2013, 61(14): 5496

[42]

OkawaA, NguyenST, NakayamaT, et al.. High-temperature corrosion of sintered RE2Si2O7 (RE = Yb and Ho) environmental barrier coating materials by volcanic ash. Int. J. Miner. Metall. Mater., 2024, 31(7): 1628

[43]

QuCK, ChenL, LvL, et al.. Low thermal conductivity and anisotropic thermal expansion of ferroelastic (Gd1−xYx)TaO4 ceramics. J. Adv. Ceram., 2022, 11(11): 1696

[44]

ZongRF, WuFS, SongP, FengJ. Influence of zirconia alloying on the thermophysical and mechanical properties of YTaO4 ceramics. Ceram. Int., 2019, 45(18): 24894

[45]

ZhuRB, ZouJP, MaoJ, et al.. A comparison between novel Gd2Zr2O7 and Gd2Zr2O7/YSZ thermal barrier coatings fabricated by plasma spray-physical vapor deposition. Rare Met., 2021, 40(8): 2244

[46]

LawsonAW. On the high temperature heat conductivity of insulators. J. Phys. Chem. Solids, 1957, 3(1–2): 155

[47]

J.H. Hu, C. Gu, J.Y. Li, C. Li, J. Feng, and Y.H. Jiang, Microstructure and oxidation behavior of the Y/Ta/Hf co-doped Al-CoCrFeNi high-entropy alloys in air at 1100°C, Corros. Sci., 212(2023), art. No. 110930.

[48]

LiC, SongP, FengJ, et al.. Alumina growth behaviour on the surface-modified NiCoCrAl alloy by Pt and Hf at high temperature. Appl. Surf. Sci., 2019, 479: 1178

[49]

KuttyKVG, RajagopalanS, MathewsCK, VaradarajuUV. Thermal expansion behaviour of some rare earth oxide pyrochlores. Mater. Res. Bull., 1994, 29(7): 759

[50]

LiuDB, ShiBL, GengLY, WangYG, XuBS, ChenYF. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. J. Adv. Ceram., 2022, 11(6): 961

[51]

YangZS, LiY, PanW, WanCL. Abnormal thermal expansion coefficients in (Nd1−cDyx)2Zr2O7 pyrochlore: The effect of low-lying optical phonons. J. Adv. Ceram., 2023, 12(5): 1001

[52]

LiuB, LiuYC, ZhuCH, et al.. Advances on strategies for searching for next generation thermal barrier coating materials. J. Mater. Sci. Technol., 2019, 35(5): 833

[53]

NixWD, GaoHJ. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids, 1998, 46(3): 411

[54]

LiXD, BhushanB. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact., 2002, 48(1): 11

[55]

YaoY, YangF, ZhaoXF. Multicomponent high-entropy Zr–Y–Yb–Ta–Nb–O oxides for next-generation thermal barrier coating applications. J. Am. Ceram. Soc., 2022, 105(1): 35

[56]

LuoKR, ChenL, LiBH, LuTL, FengJ. Composition-structure-property synergistically tailoring of Zr–Y–Ta–O oxides as candidate abradable seal coatings materials. J. Eur. Ceram. Soc., 2023, 43(12): 5347

[57]

ChengYT, ChengCM. Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett., 1998, 73(5): 614

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/