Anchoring 1T-MoS2 petals on N-doped reduced graphene oxide for exceptional electromagnetic wave absorption

Jia Zhao , Haoran Lai , Ming Li

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 619 -630.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 619 -630. DOI: 10.1007/s12613-024-2998-1
Research Article

Anchoring 1T-MoS2 petals on N-doped reduced graphene oxide for exceptional electromagnetic wave absorption

Author information +
History +
PDF

Abstract

The effective construction of electromagnetic (EM) wave absorption materials with thin matching thickness, broad bandwidth, and remarkable absorption is a great solution to EM pollution, which is a hot topic in current environmental governance. In this study, N-doped reduced graphene oxide (N-rGO) was first prepared using a facile hydrothermal method. Then, high-purity 1T-MoS2 petals were homogeneously anchored to the wrinkled surface of N-rGO to fabricate 1T-MoS2@N-rGO nanocomposites. The numerous electric di-poles and profuse heterointerfaces in 1T-MoS2@N-rGO would induced the multiple reflection and scattering of EM waves in a distinctive multidimensional structure formed by two-dimensional N-rGO and 1T-MoS2 microspheres with plentiful thin nanosheets, remarkable conduction loss derived from the migration of massive electrons in a well-constructed conductive network formed by 1T-MoS2@N-rGO, and abundant polarization loss (including dipolar polarization loss and interfacial polarization loss). All of these gave the 1T-MoS2@N-rGO nanocomposites superior EM wave absorption performances. The effective absorption bandwidth of 1T-MoS2@N-rGO reached 6.48 GHz with a relatively thin matching thickness of 1.84 mm, and a minimum reflection loss of −52.24 dB was achieved at 3.84 mm. Additionally, the radar scattering cross-section reduction value of 1T-MoS2@N-rGO was up to 35.42 dB·m2 at 0°, which further verified the huge potential of our fabricated 1T-MoS2@N-rGO nanocomposites in practical applications.

Cite this article

Download citation ▾
Jia Zhao, Haoran Lai, Ming Li. Anchoring 1T-MoS2 petals on N-doped reduced graphene oxide for exceptional electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 619-630 DOI:10.1007/s12613-024-2998-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang R, Mu CP, Wang BC, et al.. Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2023, 30(3): 485.

[2]

Liu Y, Qin JN, Lu LL, Xu J, Su XL. Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int. J. Miner. Metall. Mater., 2023, 30(3): 525.

[3]

Zhou JX, Huang XM, Lan D, et al.. Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res., 2024, 17(3): 2050.

[4]

Zhou C, Geng S, Xu XW, et al.. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon, 2016, 108: 234.

[5]

Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642.

[6]

K. Yang, Y.H. Cui, Z.H. Liu, P. Liu, Q.Y. Zhang, and B.L. Zhang, Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber, Chem. Eng. J., 426(2021), art. No. 131308.

[7]

X. Sun, Y.H. Pu, F. Wu, et al., 0D–1D–2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption, Chem. Eng. J., 423(2021), art. No. 130132.

[8]

Guo YQ, Ruan KP, Wang GS, Gu JW. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull., 2023, 68(11): 1195.

[9]

Han YX, He MK, Hu JW, et al.. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res., 2023, 16(1): 1773.

[10]

D. Lan, Z.G. Gao, Z.H. Zhao, G.L. Wu, K.C. Kou, and H.J. Wu, Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313.

[11]

F. Sun, Q.D. Liu, Y.F. Xu, et al., Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance, Chem. Eng. J., 415(2021), art. No. 128976.

[12]

Wang C, Murugadoss V, Kong J, et al.. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, 140: 696.

[13]

Li JS, Xie YZ, Lu WB, Chou TW. Flexible electromagnetic wave absorbing composite based on 3D rGO–CNT-Fe3O4 ternary films. Carbon, 2018, 129: 76.

[14]

Han XP, Huang Y, Ding L, Gao XG, Xu ZP. High thermal conductivity of GF@Cu@Ni/Si/Al composites reinforced with Cu and Ni co-deposited graphite flakes. Ceram. Int., 2020, 46(11): 19191.

[15]

Wen GS, Zhao XC, Liu Y, Zhang H, Wang C. Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J., 2019, 372: 1.

[16]

Y. Wang, X. Gao, X.M. Wu, W.Z. Zhang, C.Y. Luo, and P.B. Liu, Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber, Chem. Eng. J., 375(2019), art. No. 121942.

[17]

J. Liu, Y.P. Duan, L.X. Huang, and H.F. Pang, Electromagnetic response characteristics of lightweight hierarchical 2D nitrogen-doped graphene@amorphous carbon, Appl. Surf. Sci., 577(2022), art. No. 151974.

[18]

J. Zhao, M. Li, and X.G. Gao, Construction of SnO2 nano-particle cluster@PANI core–shell microspheres for efficient X-band electromagnetic wave absorption, J. Alloys Compd., 915(2022), art. No. 165439.

[19]

Wei Y, Zhang L, Gong CH, et al.. Fabrication of TiN/carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloys Compd., 2018, 735: 1488.

[20]

Zhao J, Wei Y, Zhang Y, Zhang QG. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol., 2022, 126: 141.

[21]

Yan P, Miao J, Cao J, et al.. Facile synthesis and excellent electromagnetic wave absorption properties of flower-like porous RGO/PANI/Cu2O nanocomposites. J. Mater. Sci., 2017, 52(22): 13078.

[22]

Yang FX, Huang Y, Han XP, et al.. Covalent bonding of MXene/reduced graphene oxide composites for efficient electromagnetic wave absorption. ACS Appl. Nano Mater., 2023, 6(5): 3367.

[23]

Zhao J, Gu Z, Zhang QG. Stacking MoS2 flower-like mi-crospheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., 2024, 17(3): 1607.

[24]

D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Lightweight and highperformance microwave absorber based on 2D WS2–RGO het-erostructures, Nano Micro Lett., 11(2019), art. No. 38.

[25]

Zhang DQ, Xiong YF, Cheng JY, et al.. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull., 2020, 65(2): 138.

[26]

Huang ZH, Cheng JY, Zhang HB, et al.. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol., 2022, 107: 155.

[27]

H.B. Zhang, J.Y. Cheng, H.H. Wang, et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation, Adv. Funct. Mater., 32(2022), No. 6, art. No. 2108194.

[28]

Guo HQ, Wang L, You WB, et al.. Engineering phase transformation of MoS2/RGO by N-doping as an excellent microwave absorber. ACS Appl. Mater. Interfaces, 2020, 12(14): 16831.

[29]

Ding Y, Zhao X, Li Q, et al.. Broadband electromagnetic wave absorption properties and mechanism of MoS2/rGO nano-composites. Mater. Chem. Front., 2021, 5(13): 5063.

[30]

J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.

[31]

J. Yan, Y. Huang, X.Y. Zhang, et al., MoS2-decorated/integ-rated carbon fiber: Phase engineering well-regulated microwave absorber, Nano Micro Lett., 13(2021), art. No. 114.

[32]

Wang HJ, Wan Y, Li BR, et al.. Rational design of Ce-doped CdS/N-rGO photocatalyst enhanced interfacial charges transfer for high effective degradation of tetracycline. J. Mater. Sci. Technol., 2024, 173: 137.

[33]

H. Zhang, H.L. Xu, L. Wang, C.Y. Ouyang, H.W. Liang, and S.L. Zhong, A metal-organic frameworks derived 1T-MoS2 with expanded layer spacing for enhanced electrocatalytic hydrogen evolution, Small, 19(2023), No. 4, art. No. 2205736.

[34]

K. Yao, Z.W. Xu, M. Ma, J.Y. Li, F.Y. Lu, and J.F. Huang, Densified metallic MoS2/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities, Adv. Funct. Mater., 30(2020), No. 32, art. No. 2001484.

[35]

Yu X, Xin L, Li XW, Wu ZQ, Liu Y. Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries. Mater. Today, 2022, 59: 25.

[36]

Zhang L, Zhang ZL, Lv YY, et al.. Reduced graphene oxide aerogels with uniformly self-assembled polyaniline nanosheets for electromagnetic absorption. ACS Appl. Nano Mater., 2020, 3(6): 5978.

[37]

G.W. Wang, G.K. Zhang, X.X. Ke, et al, Direct synthesis of stable 1T-MoS2 doped with Ni single atoms for water splitting in alkaline media, Small, 18(2022), No. 16, art. No. e2107238.

[38]

Luo JH, Feng MN, Dai ZY, Jiang CY, Yao W, Zhai NX. MoS2 wrapped MOF-derived N-doped carbon nanocom-posite with wideband electromagnetic wave absorption. Nano Res., 2022, 15(7): 5781.

[39]

Zhang WD, Zhang X, Zheng Y, et al.. Preparation of Poly-aniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater., 2018, 1(10): 5865.

[40]

X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for highperformance microwave absorption, Chem. Eng. J., 388(2020), art. No. 124317.

[41]

X. Luo, H.F. Li, D.D. Deng, et al., Preparation and excellent electromagnetic absorption properties of dendritic structured Fe3O4@PANI composites, J. Alloys Compd., 891(2022), art. No. 161922.

[42]

Chen XY, Wang ZM, Wei YZ, et al.. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem. Int. Ed, 2019, 58(49): 17621.

[43]

Z.R. Jia, J.K. Liu, Z.G. Gao, C.H. Zhang, and G.L. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers, Adv. Funct. Mater., (2024), art. No. 2405523.

[44]

X.D. Liu, S. Zhang, M. Yu, et al., WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption, Chem. Eng. J., 465(2023), art. No. 142932.

[45]

N.N. Wu, B.B. Zhao, Y.Y. Lian, et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation, Carbon, 226(2024), art. No. 119215.

[46]

Wang L, Wen B, Bai XY, Liu C, Yang HB. NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption. ACS Appl. Nano Mater., 2019, 2(12): 7827.

[47]

X. Zhong, M.K. He, C.Y. Zhang, Y.Q. Guo, J.W. Hu, and J.W. Gu, Heterostructured BN@Co–C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band, Adv. Funct. Mater., 34(2024), No. 19, art. No. 2313544.

[48]

S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925.

[49]

M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.

[50]

J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater., (2024), art. No. 2316722.

[51]

Ning Y, Zeng XJ, Peng XW, et al.. Dual template-derived 3D porous Co6Mo6C2/Mo2C@NC framework for electromagnetic wave response and multifunctional applications. J. Mater. Sci. Technol., 2024, 187: 15.

[52]

Wu YH, Tan SJ, Liu PY, Zhang Y, Li P, Ji GB. Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@rGO hybrids for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 151: 10.

[53]

R. Wang, E.Q. Yang, X.S. Qi, et al., Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers, Appl. Surf. Sci., 516(2020), art. No. 146159.

[54]

C.X. Hou, J.Y. Cheng, H.B. Zhang, et al., Biomass-derived carbon-coated WS2 core–shell nanostructures with excellent electromagnetic absorption in C-band, Appl. Surf. Sci., 577(2022), art. No. 151939.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/