Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel

Kaiyang Wang , Honghui Wu , Shaojie Lv , Linshuo Dong , Chaolei Zhang , Shuize Wang , Guilin Wu , Junheng Gao , Jiaming Zhu , Xinping Mao

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1427 -1440.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1427 -1440. DOI: 10.1007/s12613-024-2993-6
Research Article

Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel

Author information +
History +
PDF

Abstract

Hypoeutectoid steel, a crucial metal structural material, is characterized by the coexisting microstructure of ferrite and pearlite. Driven by multiphase competition and multicomponent characteristics, the intricate interplay among its composition, processing conditions, and microstructure substantially complicates the understanding of austenite decomposition kinetics and elemental diffusion mechanisms during phase transformations. The present study explores the effects of cooling rate, prior austenite grain size, and C content on the component distribution and microstructure evolution during the austenite decomposition of hypoeutectoid steels to address the aforementioned complexities. Results of a multiphase field model reveal that an increase in the cooling rate from 1.0 to 7.0°C/s leads to a reduction in the ferrite proportion and fine pearlite lamellae spacing from 52vol% to 22vol% at 400°C and from 1.01 to 0.67 µm at 660°C, respectively. Concurrently, a decreased prior austenite grain size from 25.23 to 8.91 µm enhances the phase transformation driving force, resulting in small average grain sizes of pearlite clusters and proeutectoid ferrite. Moreover, increasing the C content from 0.22wt% to 0.37wt% decreases the phase transition temperature from 795 to 750°C and enhances the proportion of pearlite phases from 27vol% to 61vol% at 500°C, concurrently refining the spacing of pearlite layers from 1.25 to 0.87 µm at 600°C. Overall, this work aims to elucidate the complex dynamics governing the microstructural transformations of hypoeutectoid steels, thereby facilitating their wide application across different industrial scenes.

Keywords

hypoeutectoid steels / phase-field simulation / cooling rate / prior austenite grain size / carbon content

Cite this article

Download citation ▾
Kaiyang Wang, Honghui Wu, Shaojie Lv, Linshuo Dong, Chaolei Zhang, Shuize Wang, Guilin Wu, Junheng Gao, Jiaming Zhu, Xinping Mao. Multiphase field modeling of austenite to pearlite–ferrite transformation in hypoeutectoid steel. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(6): 1427-1440 DOI:10.1007/s12613-024-2993-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BhadeshiaH, HoneycombeRSteels: Microstructure and Properties, 20174th ed.Oxford, Butterworth-Heinemann

[2]

ZhouDS, ShifletGJ. Ferrite: Cementite crystallography in pearlite. Metall. Trans. A, 1992, 23(4): 1259

[3]

HawboltEB, ChauB, BrimacombeJK. Kinetics of austenite–ferrite and austenite–pearlite transformations in a 1025 carbon steel. Metall. Trans. A, 1985, 16(4): 565

[4]

SimHJ, LeeYB, NamWJ. Ductility of hypo-eutectoid steels with ferrite–pearlite structures. J. Mater. Sci., 2004, 39(5): 1849

[5]

BaeCM, NamWJ, LeeCS. Effect of microstructural features on ductility in hypo-eutectoid steels. Scripta Mater., 1999, 41(6): 605

[6]

GladmanT, MclvorID, PickeringFB. Some aspects of the structure-property relationships in high-carbon ferrite–pearlite steels. J. Iron Steel Inst., 1972, 210(12): 916

[7]

RayKK, MondalD. The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels. Acta Metall. Mater., 1991, 39(10): 2201

[8]

HouinJP, SimonA, BeckG. Relationship between structure and mechanical properties of pearlite between 0.2% and 0.8%C. Trans. Iron Steel Inst. Jpn., 1981, 21(10): 726

[9]

LeeSI, KangJY, LeeSY, HwangB. Effect of microstructural factors on strength and ductility in hypoeutectoid steels with ferrite–pearlite structure. J. Korean Soc. Heat Treat., 2016, 29(1): 8

[10]

ZhangCL, LiuYZ, ZhouLY. Transformation conditions-microstructures–mechanical properties relationship in 0.60%C hypoeutectoid steel. Steel Res. Int., 2011, 82(10): 1207

[11]

ThompsonSW, HowellPR. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Mater. Sci. Technol., 1992, 8(9): 777

[12]

SchindlerI, NěmecJ, KawulokP, et al.. The combined effect of chemical composition and cooling rate on transformation temperatures of hypoeutectoid steels. Kovove Mater., 2018, 56(3): 163

[13]

ParashivamurthyKI, MallikarjunaC. Effect of manganese on the microstructure and TiC precipitation in hypoeutectoid steel. Mater. Manuf. Process., 2013, 28(11): 1161

[14]

RożniataE, DziurkaR. Analysis of the microstructure of 37MnMo6-3 hypoeutectoid steel. Arch. Mater. Sci. Eng., 2012, 58(2): 125

[15]

MajiS, SubhaniAR, ShowBK, MaityJ. Effect of cooling rate on microstructure and mechanical properties of eutectoid steel under cyclic heat treatment. J. Mater. Eng. Perform., 2017, 26(7): 3058

[16]

KopTA, SietsmaJ, ZwaagSVD. Dilatometric analysis of phase transformations in hypo-eutectoid steels. J. Mater. Sci., 2001, 36(2): 519

[17]

LiuT, LongMJ, FanHL, et al.. Dilatometric determination of four critical temperatures and phase transition fraction for austenite decomposition in hypo-eutectoid steels using peak separation method. J. Mater. Res., 2018, 33(8): 967

[18]

DeyI, GhoshSK, SahaR. Effects of cooling rate and strain rate on phase transformation, microstructure and mechanical behaviour of thermomechanically processed pearlitic steel. J. Mater. Res. Technol., 2019, 8(3): 2685

[19]

SerajzadehS, TaheriAK. A study on austenite decomposition during continuous cooling of a low carbon steel. Mater. Des., 2004, 25(8): 673

[20]

HuCL, ChenLQ, ZhaoZ, GongAJ, ShiWB. Effects of controlled cooling-induced ferrite–pearlite microstructure on the cold forgeability of XC45 steel. J. Mater. Eng. Perform., 2018, 27(6): 2772

[21]

FengHB, LiSH, WangKX, et al.. Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel. Int. J. Miner. Metall. Mater., 2024, 31(5): 833

[22]

WangXL, XieZJ, LiXC, ShangCJ. Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel. Int. J. Miner. Metall. Mater., 2024, 31(6): 1298

[23]

LiuZQ, MiyamotoG, YangZG, FuruharaT. Volume fractions of proeutectoid ferrite/pearlite and their dependence on prior austenite grain size in hypoeutectoid Fe–Mn–C alloys. Metall. Mater. Trans. A, 2013, 44(12): 5456

[24]

HuY, ChenWQ, HanHB, BaiRJ. Effect of proeutectoid ferrite morphology on the microstructure and mechanical properties of hot rolled 60Si2MnA spring steel. High Temp. Mater. Process., 2017, 36(2): 127

[25]

TomotaY, WatanabeO, KanieA, MoriaiA, MinakawaN, MoriaiY. Effect of carbon concentration on tensile behaviour of pearlitic steels. Mater. Sci. Technol., 2003, 19(12): 1715

[26]

B. Su, Q.X. Ma, and Z.Q. Han, Modeling of austenite decomposition during continuous cooling process in heat treatment of hypoeutectoid steel with cellular automaton method, Steel Res. Int., 88(2017), No. 9, art. No. 1600490.

[27]

MecozziMG, BosC, SietsmaJ. A mixed-mode model for the ferrite-to-austenite transformation in a ferrite/pearlite microstructure. Acta Mater., 2015, 88: 302

[28]

SerajzadehS. Modelling of temperature history and phase transformations during cooling of steel. J. Mater. Process. Technol., 2004, 146(3): 311

[29]

ThiessenRG, RichardsonIM, SietsmaJ. Physically based modelling of phase transformations during welding of low-carbon steel. Mater. Sci. Eng. A, 2006, 427(1–2): 223

[30]

J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier, and F. Bonnet, Intercritical annealing of cold-rolled ferrite–pearlite steel: Microstructure evolutions and phase transformation kinetics, Acta Mater., 212(2021), art. No. 116920.

[31]

C. Dulucheanu, T.L. Severin, A. Potorac, and L. Irimescu, Determination of the critical points in solid-state phase transformation of some hypoeutectoid steels, E3S Web Conf., 95(2019), art. No. 04004.

[32]

GengXY, ChenHC, WangJJ, ZhangY, LuoQ, LiQ. Description of martensitic transformation kinetics in Fe-C-X (X = Ni, Cr, Mn, Si) system by a modified model. Int. J. Miner. Metall. Mater., 2024, 31(5): 1026

[33]

PanGF, WangFY, ShangCL, et al.. Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Miner. Metall. Mater., 2023, 30(6): 1003

[34]

N.P. Anufriev, M.V. Maisuradze, and Y.V. Yudin, Numerical simulation of structural transformations in hypoeutectoid low-alloy steels, Met. Sci. Heat Treat., 53(2011), No. 3, art. No. 189.

[35]

RudnizkiJ, BöttgerB, PrahlU, BleckW. Phase-field modeling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel. Metall. Mater. Trans. A, 2011, 42(8): 2516

[36]

SteinbachI, PezzollaF, NestlerB, et al.. A phase field concept for multiphase systems. Physica D, 1996, 94(3): 135

[37]

ChoiS. Model for estimation of transformation kinetics from the dilatation data during a cooling of hypoeutectoid steels. Mater. Sci. Eng. A, 2003, 363(1–2): 72

[38]

Al-AbbasiFM. Micromechanical modeling of ferrite–pearlite steels. Mater. Sci. Eng. A, 2010, 527(26): 6904

[39]

I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., 17(2009), No. 7, art. No. 073001.

[40]

J. Eiken, B. Böttger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73(2006), No. 6, art. No. 066122.

[41]

WangKY, LvSJ, WuHH, et al.. Recent research progress on the phase-field model of microstructural evolution during metal solidification. Int. J. Miner. Metall. Mater., 2023, 30(11): 2095

[42]

LvSJ, WuHH, WangKY, et al.. The austenite to polygonal ferrite transformation in low-alloy steel: Multi-phase-field simulation. J. Mater. Res. Technol., 2023, 24: 9630

[43]

S.J. Lv, H.H. Wu, K.Y. Wang, et al., The microstructure evolution and influence factors of acicular ferrite in low alloy steels, Comput. Mater. Sci., 218(2023), art. No. 111989.

[44]

LvSJ, WuHH, WangKY, et al.. Phase field simulation of eutectoid microstructure during austenite–pearlite phase transformation. J. Mater. Res. Technol., 2023, 26: 8922

[45]

AnderssonJO, HelanderT, HöglundL, ShiPF, SundmanB. Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002, 26(2): 273

[46]

BorgenstamA, HöglundL, ÅgrenJ, EngströmA. DICTRA, a tool for simulation of diffusional transformations in alloys. J. Phase Equilib., 2000, 21(3): 269

[47]

V.M. Ferreira, M.G. Mecozzi, R.H. Petrov, and J. Sietsma, Details of pearlite to austenite transformation in steel: Experiments and phase-field modeling, Comput. Mater. Sci., 228(2023), art. No. 112368.

[48]

ArandaMM, KimB, RementeriaR, CapdevilaC, de AndresCG. Effect of prior austenite grain size on pearlite transformation in a hypoeuctectoid Fe–C–Mn steel. Metall. Mater. Trans. A, 2014, 45(4): 1778

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/