Optimizing the overall performance of Cu-Ni-Si alloy via controlling nanometer-lamellar discontinuous precipitation structure

Jinyu Liang , Guoliang Xie , Feixiang Liu , Wenli Xue , Rui Wang , Xinhua Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 915 -924.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 915 -924. DOI: 10.1007/s12613-024-2969-6
Research Article

Optimizing the overall performance of Cu-Ni-Si alloy via controlling nanometer-lamellar discontinuous precipitation structure

Author information +
History +
PDF

Abstract

Simultaneously achieving high strength and high electrical conductivity in Cu-Ni-Si alloys pose a significant challenge, which greatly constrains its applications in the electronics industry. This paper offers a new pathway to improve properties, by preparation of nanometer lamellar discontinuous precipitates (DPs) arranged with the approximate same direction through a combination of deformation-aging and cold rolling process. The strengthening effect is primarily attributed to nanometer-lamellar DPs strengthening and dislocation strengthening mechanism. The accumulation of dislocations at the interface between nanometer lamellar DPs and matrix during cold deformation process can results in the decrease of dislocation density inside the matrix grains, leading to the acceptably slight reduction of electrical conductivity during cold rolling. The alloy exhibits an electrical conductivity of 45.32%IACS (international annealed copper standard, IACS), a tensile strength of 882.67 MPa, and a yield strength of 811.33 MPa by this method. This study can provide a guidance for the composition and microstructure design of a Cu-Ni-Si alloy in the future, by controlling the morphology and distribution of DPs.

Keywords

Cu-Ni-Si alloys / discontinuous precipitates / nanometer-lamellar strengthening / dislocation strengthening

Cite this article

Download citation ▾
Jinyu Liang, Guoliang Xie, Feixiang Liu, Wenli Xue, Rui Wang, Xinhua Liu. Optimizing the overall performance of Cu-Ni-Si alloy via controlling nanometer-lamellar discontinuous precipitation structure. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(4): 915-924 DOI:10.1007/s12613-024-2969-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.X. Liu, G.L. Xie, S.J. Wang, J. Yang, C.G. Chen, and X.H. Liu, Excellent combination of mechanical properties and electrical conductivity obtained by minute addition of alloying elements and nanometer scaled Al2O3 in copper alloy, Mater. Sci. Eng. A, 867(2023), art. No. 144689.

[2]

JiangL, FuHD, WangCS, LiWD, XieJX. Enhanced mechanical and electrical properties of a Cu-Ni-Si alloy by thermo-mechanical processing. Metall. Mater. Trans. A, 2020, 51(1): 331

[3]

C.S. Wang, H.D. Fu, H.T. Zhang, X.Q. He, and J.X. Xie, Simultaneous enhancement of mechanical and electrical properties of Cu-Ni-Si alloys via thermo-mechanical process, Mater. Sci. Eng. A, 838(2022), art. No. 142815.

[4]

W.N. Liao, H.Q. Yang, C. Yi, and J.H. Zheng, Effect and mechanism of cold rolling and aging process on microstructure and properties of columnar grain C70250 copper alloy, Mater. Sci. Eng. A, 833(2022), art. No. 142577.

[5]

YangHY, MaZC, LeiCH, et al.. High strength and high conductivity Cu alloys: A review. Sci. China Technol. Sci., 2020, 63(12): 2505

[6]

GengYF, BanYJ, WangBJ, et al.. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys. J. Mater. Res. Technol., 2020, 9(5): 11918

[7]

XiaoXP, XiongBQ, WangQS, XieGL, PengLJ, HuangGX. Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments. Rare Met., 2013, 32(2): 144

[8]

ZhangY, TianBH, VolinskyAA, et al.. Microstructure and precipitate’s characterization of the Cu-Ni-Si-P alloy. J. Mater. Eng. Perform., 2016, 25(4): 1336

[9]

WangW, KangHJ, ChenZN, et al.. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A, 2016, 673: 378

[10]

YiJ, JiaYL, ZhaoYY, et al.. Precipitation behavior of Cu-3.0Ni-0.72Si alloy. Acta Mater., 2019, 166: 261

[11]

K. Fukamachi and M. Kimura, Age-hardening structure and mechanism of Cu-3at%Ni-1.5at%Si Corson alloy, Mater. Sci. Eng. A, 831(2022), art. No. 142220.

[12]

WangYH, WangMP, HongB. Microstructures of spinodal phases in Cu-15Ni-8Sn alloy. Int. J. Miner. Metall. Mater., 2005, 12(3): 243

[13]

HuT, ChenJH, LiuJZ, LiuZR, WuCL. The crystal-lographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys. Acta Mater., 2013, 61(4): 1210

[14]

GholamiM, VeselyJ, AltenbergerI, et al.. Effects of microstructure on mechanical properties of CuNiSi alloys. J. Alloy. Compd., 2017, 696: 201

[15]

Q.R. Yang, Q. Liu, X.H. Liu, et al., Microstructure and mechanical properties of Cu-Ni-Si alloy plate produced by HCCM horizontal continuous casting, J. Alloy. Compd., 893(2022), art. No. 162302.

[16]

K. Yang, Y.H. Wang, M.X. Guo, et al., Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: A review, Prog. Mater. Sci., 138(2023), art. No. 101141.

[17]

W.N. Liao, H. Qiang, W.F. Song, Y.Y. Hu, and C.X. Zhang, Effect and mechanism of room temperature rolling, cryogenic rolling and heat treatment on mechanical properties and electrical conductivity of Cu-Ni-Si alloy with continuous directional solidification, J. Alloy. Compd., 949(2023), art. No. 169748.

[18]

W.N. Liao, C.X. Zhang, H. Qiang, W.F. Song, and Y.Y. Hu, The comprehensive performance and strengthening mechanism of the columnar crystal Cu-Ni-Si alloy after two large deformation rates of cryogenic rolling-aging, J. Alloy. Compd., 936(2023), art. No. 168281.

[19]

BanYJ, GengYF, HouJR, et al.. Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si-Cr alloy. J. Mater. Sci. Technol., 2021, 93: 1

[20]

ZhangHT, FuHD, ShenYH, XieJX. Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu-Ni-Co-Si-X alloy via Bayesian optimization machine learning. Int. J. Miner. Metall. Mater., 2022, 29(6): 1197

[21]

W. Wang, J. Wang, S.J. Li, et al., Effects of Nb addition on the properties and microstructure of Cu-Ni-Si-Mg alloy, Mater. Charact., 194(2022), art. No. 112451.

[22]

WangW, ShiBB, WangC, et al.. Effects of Sn and Nb additions on the corrosion resistance of Cu-Ni-Si-Mg alloy. Corrosion, 2022, 78(11): 1048

[23]

M.F. Wang, S.F. Chen, S.W. Wang, M.X. Zhang, H.W. Song, and S.H. Zhang, Effects of La addition on microstructure evolution and thermal stability of Cu-2.35Ni-0.59Si sheet, Materials, 16(2023), No. 11, art. No. 4105.

[24]

L. Jia, M.F. Yang, S.P. Tao, et al., Microstructure evolution and reaction behavior of Cu-Ni-Si powder system under solid-state sintering, Mater. Chem. Phys., 271(2021), art. No. 124942.

[25]

WangHS, ChenHG, GuJW, HsuCE, WuCY. Improvement in strength and thermal conductivity of powder metallurgy produced Cu-Ni-Si-Cr alloy by adjusting Ni/Si weight ratio and hot forging. J. Alloy. Compd., 2015, 633: 59

[26]

M. Goto, T. Yamamoto, E.A. Choi, et al., Physical background of significant increase in mechanical properties and fatigue strength of groove-rolled Cu-Ni-Si alloy with discontinuous precipitates, J. Alloy. Compd., 947(2023), art. No. 169569.

[27]

M. Goto, T. Yamamoto, S.Z. Han, et al., Simultaneous increase in electrical conductivity and fatigue strength of Cu-Ni-Si alloy by utilizing discontinuous precipitates, Mater. Lett., 288(2021), art. No. 129353.

[28]

KashyapKT. Discontinuous precipitation in copper base alloys. Bull. Mater. Sci., 2009, 32(4): 413

[29]

GotoM, YamamotoT, HanSZ, et al.. Microstructure-dependent fatigue behavior of aged Cu-6Ni-1.5Si alloy with discontinuous/cellular precipitates. Mater. Sci. Eng. A, 2019, 747: 63

[30]

XieWB, WangQS, XieGL, MiXJ, LiuDM, GaoXC. Kinetics of discontinuous precipitation in Cu-20Ni-20Mn alloy. Int. J. Miner. Metall. Mater., 2016, 23(3): 323

[31]

CaoYC, HanSZ, ChoiEA, et al.. Effect of pre-deformation before aging on discontinuous precipitation behaviour in Cu-Ni-Si alloys. Philos. Mag. Lett., 2021, 101(2): 51

[32]

R.X. Wang, Y. Tang, S. Li, et al., Effect of lattice distortion on the diffusion behavior of high-entropy alloys, J. Alloy. Compd., 825(2020), art. No. 154099.

[33]

Y.X. Geng, D. Zhang, J.S. Zhang, and L.Z. Zhuang, Early-stage clustering and precipitation behavior in the age-hardened Al-Mg-Zn (-Cu) alloys, Mater. Sci. Eng. A, 856(2022), art. No. 144015.

[34]

K.S. Hu, C.M. Zou, H.W. Wang, and Z.J. Wei, Influence of Ti elements on the evolution of microstructure, mechanical properties and thermal stability of Al-Cu alloy, J. Alloy. Compd., 952(2023), art. No. 169860.

[35]

S.Y. Wang, F.C. Lang, and Y.M. Xing, Geometric phase analysis for characterization of 3D morphology of carbon fiber reinforced composites, Compos. Sci. Technol., 242(2023), art. No. 110215.

[36]

LeiJG, LiuP, JingXT, ZhaoDM, HuangJL. Aging kinetics in a CuNiSiCr alloy. J. Mater. Res. Technol., 2004, 6(6): 727

[37]

FengHC, CaiL, WangLF, ZhangXD, FangF. Microstructure and strength in ultrastrong cold-drawn medium carbon steel. J. Mater. Sci. Technol., 2022, 97: 89

[38]

H.C. Feng, L.F. Wang, S.Y. Cui, N. Hansen, F. Fang, and X.D. Zhang, Microstructure and strengthening mechanisms of nanolamellar structures in ultrastrong drawn iron wires, Scripta Mater., 200(2021), art. No. 113906.

[39]

WuYK, LiY, LuJY, TanS, JiangF, SunJ. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy. Mater. Sci. Eng. A, 2019, 742: 501

[40]

X.H. Meng, G.L. Xie, W.L. Xue, Y.L. Fu, R. Wang, and X.H. Liu, The precipitation behavior of a Cu-Ni-Si alloy with Cr addition prepared by heating-cooling combined mold (HCCM) continuous casting, Materials, 15(2022), No. 13, art. No. 4521.

[41]

LeiQ, LiZ, WangMP, ZhangL, XiaoZ, JiaYL. The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging. Mater. Sci. Eng. A, 2010, 527(24–25): 6728

[42]

R. Zhang, Z. Li, X.F. Sheng, Y. Gao, and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu-Ni-Si alloy during multidirectional forging, Fusion Eng. Des., 159(2020), art. No. 111766.

[43]

J. Li, G.J. Huang, X.J. Mi, L.J. Peng, H.F. Xie, and Y.L. Kang, Effect of Ni/Si mass ratio and thermomechanical treatment on the microstructure and properties of Cu-Ni-Si alloys, Materials, 12(2019), No. 13, art. No. 2076.

[44]

BotcharovaE, FreudenbergerJ, SchultzL. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys. Acta Mater., 2006, 54(12): 3333

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/