NO2 gas sensor with high selectivity and fast response based on Pt-loaded nanoporous GaN

Dan Han , Xiaoru Liu , Donghui Li , Jiexu Shi , Yu Wang , Yuxuan Wang , Hongtao Wang , Shengbo Sang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 964 -972.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (4) : 964 -972. DOI: 10.1007/s12613-024-2959-8
Research Article

NO2 gas sensor with high selectivity and fast response based on Pt-loaded nanoporous GaN

Author information +
History +
PDF

Abstract

In this work, we realized a room-temperature nitrogen dioxide (NO2) gas sensor based on a platinum (Pt)-loaded nanoporous gallium nitride (NP-GaN) sensing material using the thermal reduction method and coreduction with the catalysis of polyols. The gas sensor gained excellent sensitivity to NO2 at a concentration range of 200 ppm to 100 ppb, benefiting from the loading of Pt nanoparticles, and exhibited a short response time (22 s) and recovery time (170 s) to 100 ppm of NO2 at room temperature with excellent selectivity to NO2 compared with other gases. This phenomenon was attributed to the spillover effect and the synergic electronic interaction with semiconductor materials of Pt, which not only provided more electrons for the adsorption of NO2 molecules but also occupied effective sites, causing poor sites for other gases. The low detection limit of Pt/NP-GaN was 100 ppb, and the gas sensor still had a fast response 70 d after fabrication. Besides, the gas-sensing mechanism of the gas sensor was further elaborated to determine the reason leading to its improved properties. The significant spillover impact and oxygen dissociation of Pt provided advantages to its synergic electronic interaction with semiconductor materials, leading to the improvement of the gas properties of gas sensors.

Keywords

nanoporous gallium nitride / platinum / nitrogen dioxide / gas sensor

Cite this article

Download citation ▾
Dan Han, Xiaoru Liu, Donghui Li, Jiexu Shi, Yu Wang, Yuxuan Wang, Hongtao Wang, Shengbo Sang. NO2 gas sensor with high selectivity and fast response based on Pt-loaded nanoporous GaN. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(4): 964-972 DOI:10.1007/s12613-024-2959-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C.X. Zhang, C. Liu, B. Li, F. Zhao, and C.H. Zhao, Spatiotemporal neural network for estimating surface NO2 concentrations over North China and their human health impact, Environ. Pollut., 307(2022), art. No. 119510.

[2]

D.H. Li, D. Han, Y. Chen, et al., Hollow porous GaN nanofibers gas sensor for superior stability and sub-ppb-level NO2 gas detection, Sens. Actuat. B: Chem., 371(2022), art. No. 132583.

[3]

AmoahNA, XuG, WangY, LiJY, ZouYM, NieBS. Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review. Int. J. Miner. Metall. Mater., 2022, 29(8): 1475

[4]

M.M.M.F. Jion, J.N. Jannat, M.Y. Mia, et al., A critical review and prospect of NO2 and SO2 pollution over Asia: Hotspots, trends, and sources, Sci. Total Environ., 876(2023), art. No. 162851.

[5]

AgbonlahorOG, MuruganathanM, RamarajSG, et al.. Interfacial ammonia selectivity, atmospheric passivation, and molecular identification in graphene-nanopored activated carbon molecular-sieve gas sensors. ACS Appl. Mater. Interfaces, 2021, 13(51): 61770

[6]

WanH, YinHY, LinL, ZengXQ, MasonAJ. Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sens. Actuat. B: Chem., 2018, 255: 638

[7]

ZhaoJL, ShenWF, LvDW, et al.. Gas-sensing technology for human breath detection. Prog. Chem., 2023, 35(2): 302

[8]

S. Hong, M.L. Wu, Y. Hong, et al., FET-type gas sensors: A review, Sens. Actuat. B: Chem., 330(2021), art. No. 129240.

[9]

D. Han, Y. Chen, D.H. Li, et al., Au nanoparticles decorated GaN nanoflowers with enhanced NH3 sensing performance at room temperature, Sens. Actuat. B: Chem., 394(2023), art. No. 134320.

[10]

H.A.A. Abdul Amir, M.A. Fakhri, A.A. Alwahib, E.T. Salim, F.H. Alsultany, and U. Hashim, An investigation on GaN/porous-Si NO2 gas sensor fabricated by pulsed laser ablation in liquid, Sens. Actuat. B: Chem., 367(2022), art. No. 132163.

[11]

J.Y. Hu, J.W. Zhang, X. Liu, H.Y. Zhang, X.X. Xue, and Y. Zhang, Highly selective NO2 sensor based on Au/SnS2 nanoheterostructures via visible-light modulation, Appl. Surf. Sci., 623(2023), art. No. 157093.

[12]

M.Y. Kim, S.Y. Lee, A. Mirzaei, et al., NO2 gas sensing properties of Ag-functionalized porous ZnO sheets, Adsorpt. Sci. Technol., 2023(2023),. art. No. 9021169.

[13]

S. Kumar, S.D. Lawaniya, S. Agarwal, et al., Optimization of Pt nanoparticles loading in ZnO for highly selective and stable hydrogen gas sensor at reduced working temperature, Sens. Actuat. B: Chem., 375(2023), art. No. 132943.

[14]

WusimanM, TaghipourF. Methods and mechanisms of gas sensor selectivity. Crit. Rev. Solid State Mater. Sci., 2022, 47(3): 416

[15]

ShafaM, PrianteD, ElAfandyRT, et al.. Twofold porosity and surface functionalization effect on Pt-porous GaN for high-performance H2-gas sensors at room temperature. ACS Omega, 2019, 4(1): 1678

[16]

W.J. Zhao, R.T. Yan, H. Li, K.L. Ding, Y.S. Chen, and D. Xu, Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes, Mater. Lett., 330(2023), art. No. 133386.

[17]

ShinD, SohnI, KimJ, et al.. Defect-selective functionalization of 2D-WS2 nanofilms with Pt nanoparticles for enhanced room-temperature NO2 gas sensing. ACS Appl. Nano Mater., 2023, 6(20): 19327

[18]

Y.L. Wang, Z.Q. Liu, L. Yang, et al., Highly selective gas sensor for rapid detection of triethylamine using PdRu alloy nanoparticles functionalized SnO2, Sens. Actuat. B: Chem., 379(2023), art. No. 133205.

[19]

J.J. Liu, L.Y. Zhang, J.J. Fan, B.C. Zhu, and J.G. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres, Sens. Actuat. B: Chem., 331(2021), art. No. 129425.

[20]

I. Susanto, C.Y. Tsai, Fachruddin, et al., The influence of 2D MoS2 layers on the growth of GaN films by plasma-assisted molecular beam epitaxy, Appl. Surf. Sci., 496(2019), art. No. 143616.

[21]

SarnoM, PonticorvoE. Much enhanced electrocatalysis of Pt/PtO2 and low platinum loading Pt/PtO2–Fe3O4 dumbbell nanoparticles. Int. J. Hydrogen Energy, 2017, 42(37): 23631

[22]

K. Shingange, H.C. Swart, and G.H. Mhlongo, Design of porous p-type LaCoO3 nanofibers with remarkable response and selectivity to ethanol at low operating temperature, Sens. Actuat. B: Chem., 308(2020), art. No. 127670.

[23]

H.T. Wang, Y.Y. Li, C.C. Wang, et al., N-pentanol sensor based on ZnO nanorods functionalized with Au catalysts, Sens. Actuat. B: Chem., 339(2021), art. No. 129888.

[24]

Y.H. Gui, Y.S. Tu, H.S. Guo, et al., Microwave-assisted efficient synthesis of ZnO nanospheres for low temperature NO2 gas sensor, Mater. Sci. Eng. B, 299(2024), art. No. 117031.

[25]

H.N. Bai, H. Guo, J. Wang, et al., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets, Sens. Actuat. B: Chem., 337(2021), art. No. 129783.

[26]

H.N. Bai, H. Guo, J. Wang, et al., Hydrogen gas sensor based on SnO2 nanospheres modified with Sb2O3 prepared by one-step solvothermal route, Sens. Actuat. B: Chem., 331(2021), art. No. 129441.

[27]

ZhangLZ, ShiJN, HuangYH, et al.. Octahedral SnO2/graphene composites with enhanced gas-sensing performance at room temperature. ACS Appl. Mater. Interfaces, 2019, 11(13): 12958

[28]

LiYX, SongZX, LiYN, et al.. Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sens. Actuat. B: Chem., 2019, 282: 259

[29]

ParkS, KoH, KimS, LeeCM. Gas sensing properties of multiple networked GaN/WO3 core–shell nanowire sensors. Ceram. Int., 2014, 40(6): 8305

[30]

Z.J. Yang, L. Jiang, J. Wang, et al., Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application, Sens. Actuat. B: Chem., 326(2021), art. No. 128828.

[31]

Q. Thanh Hoai Ta, N. Ngoc Tri, and J.S. Noh, Improved NO2 gas sensing performance of 2D MoS2/Ti3C2Tx MXene nanocomposite, Appl. Surf. Sci., 604(2022), art. No. 154624.

[32]

A.V. Agrawal, N. Kumar, and M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide, Nano Micro Lett., 13(2021), art. No. 38.

[33]

ChuSY, WuMJ, YehTH, LeeCT, LeeH. Sensing mechanism and characterization of NO2 gas sensors using gold-black NP-decorated Ga2O3 nanorod sensing membranes. ACS Sens., 2023, 9(1): 118

[34]

YinY, ShenY, ZhaoS, et al.. Enhanced detection of ppb-level NO2 by uniform Pt-doped ZnSnO3 nanocubes. Int. J. Miner. Metall. Mater., 2022, 29(6): 1295

[35]

P.J. Cao, Y.Z. Cai, D. Pawar, et al., Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors, Chem. Eng. J., 401(2020), art. No. 125491.

[36]

Y.S. Xu, J.Y. Xie, Y.F. Zhang, et al., Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature, J. Hazard. Mater., 411(2021), art. No. 125120.

[37]

N. Sharma, S. Kumar, A. Gupta, et al., MoS2 functionalized AlGaN/GaN transistor based room temperature NO2 gas sensor, Sens. Actuat. A: Phys., 342(2022), art. No. 113647.

[38]

G. Mathankumar, P. Bharathi, M.K. Mohan, J. Archana, S. Harish, and M. Navaneethan, Defect manipulation of WO3 nanostructures by yttrium for ultra-sensitive and highly selective NO2 detection, Sens. Actuat. B: Chem., 353(2022), art. No. 131057.

[39]

W.W. Wang, D.Y. Wang, X.X. Zhang, C.Q. Yang, and D.Z. Zhang, Self-powered nitrogen dioxide sensor based on Pd-decorated ZnO/MoSe2 nanocomposite driven by triboelectric nanogenerator, Nanomaterials, 12(2022), No. 23, art. No. 4274.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/