Interfacial electron rearrangement of 3D Fe3O4/h-YFeO3 composites for efficient electromagnetic wave absorption

Yi Sui , Yingde Zhang , Guang Liu , Lei Ji , Junyu Yue , Chen Wu , Mi Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 609 -618.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 609 -618. DOI: 10.1007/s12613-024-2940-6
Research Article

Interfacial electron rearrangement of 3D Fe3O4/h-YFeO3 composites for efficient electromagnetic wave absorption

Author information +
History +
PDF

Abstract

Interface modulation is an important pathway for highly efficient electromagnetic wave absorption. Herein, tailored interfaces between Fe3O4 particles and the hexagonal-YFeO3 (h-YFeO3) framework were constructed via facile self-assembly. The resulting interfacial electron rearrangement at the heterojunction led to enhanced dielectric and magnetic loss synergy. Experimental results and density function theory (DFT) simulations demonstrate a transition in electrical properties from a half-metallic monophase to metallic Fe3O4/h-YFeO3 composites, emphasizing the advantages of the formed heterointerface. The transformation of electron behavior is also accompanied by a redistribution of electrons at the Fe3O4/h-YFeO3 heterojunction, leading to the accumulation of localized electrons around the Y–O–Fe band bridge, consequently enhancing the polarization. A minimum reflection loss of −34.0 dB can be achieved at 12.0 GHz and 2.0 mm thickness with an effective bandwidth of 3.3 GHz due to the abundant interfaces, enhanced polarization, and rational impedance. Thus, the synergistic effects endow the Fe3O4/h-YFeO3 composites with high performance and tunable functional properties for efficient electromagnetic absorption.

Cite this article

Download citation ▾
Yi Sui, Yingde Zhang, Guang Liu, Lei Ji, Junyu Yue, Chen Wu, Mi Yan. Interfacial electron rearrangement of 3D Fe3O4/h-YFeO3 composites for efficient electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 609-618 DOI:10.1007/s12613-024-2940-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren F, Song DP, Li Z, et al.. Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C, 2018, 6(6): 1476.

[2]

Biswas S, Panja SS, Bose S. Tailored distribution of nan-oparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: Challenges and prospects. J. Mater. Chem. C, 2018, 6(13): 3120.

[3]

Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Koo CM. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 2015, 94: 494.

[4]

Zhang Y, Huang Y, Zhang TF, et al.. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater., 2015, 27(12): 2049.

[5]

Huang HD, Liu CY, Zhou D, et al.. Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J. Mater. Chem. A, 2015, 3(9): 4983.

[6]

Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater., 2013, 25(9): 1296.

[7]

Zhang T, Huang DQ, Yang Y, Kang FY, Gu JL. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. B, 2013, 178(1): 1.

[8]

Shen B, Zhai WT, Tao MM, Ling JQ, Zheng WG. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces, 2013, 5(21): 11383.

[9]

Li N, Huang GW, Xiao HM, Feng QP, Fu SY. Investigations on structure-dependent microwave absorption performance of nano-Fe3O4 coated carbon-based absorbers. Carbon, 2019, 144: 216.

[10]

Jian X, Wu B, Wei Y, et al.. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces, 2016, 8(9): 6101.

[11]

Mordina B, Kumar R, Tiwari RK, Setua DK, Sharma A. Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocompos-ites as efficient microwave absorber. J. Phys. Chem. C, 2017, 121(14): 7810.

[12]

Liu YJ, Song D, Wu CX, Leng JS. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B Eng., 2014, 63: 34.

[13]

Cao MS, Yang J, Song WL, et al.. Ferroferric oxide/multi-walled carbon nanotube vs polyaniline/ferroferric oxide/multi-walled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces, 2012, 4(12): 6949.

[14]

Ren XY, Song YH, Gao ZG, Wu YL, Jia ZR, Wu GL. Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 134: 254.

[15]

Zhou ZH, Lan D, Ren JW, et al.. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol., 2024, 185: 165.

[16]

J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932.

[17]

Zhang SJ, Lan D, Zheng JJ, et al.. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2024, 31(12): 2749.

[18]

Wang XX, Ma T, Shu JC, Cao MS. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J., 2018, 332: 321.

[19]

Ren LG, Wang YQ, Zhang X, He QC, Wu GL. Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres. Int. J. Miner. Metall. Mater., 2023, 30(3): 504.

[20]

Zhan YQ, Long ZH, Wan XY, Zhang JM, He SJ, He Y. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci., 2018, 444: 710.

[21]

S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698.

[22]

S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925.

[23]

C.S. Lei, W. Zhou, Q.G. Feng, et al., Charge engineering of Mo2C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H2 evolution, Nano Micro Lett., 11(2019), No. 1, art. No. 45.

[24]

B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, and C. Zhao, Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide, Nat. Commun., 10(2019), No. 1, art. No. 5599.

[25]

Zhong WD, Li WL, Yang CF, et al.. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. J. Energy Chem., 2021, 61: 236.

[26]

Zhong WD, Yang CF, Wu J, et al.. Adsorption site engineering: Cu–Ni(OH)2 sheets for efficient hydrogen evolution. J. Mater. Chem A, 2021, 9(32): 17521.

[27]

Rosales-González O, Jesús F S-D, Cortés-Escobedo CA, Bolarín-Miró AM. Crystal structure and multi-ferroic behavior of perovskite YFeO3. Ceram. Int., 2018, 44(13): 15298.

[28]

Stoeffler D, Chaker Z. First principles study of the electronic structure and magnetic properties of YFeO3 oxide. J. Magn. Magn. Mater., 2017, 442: 255.

[29]

Tsurkan V, Krug von Nidda HA, Deisenhofer J, Lunken-heimer P, Loidl A. On the complexity of spinels: Magnetic, electronic, and polar ground states. Phys. Rep., 2021, 926: 1.

[30]

H.M. Zhang, Y.K. Weng, X.Y. Yao, and S. Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B, 91(2015), No. 19, art. No. 195145.

[31]

Varma A, Mukasyan AS, Rogachev AS, Manuky-an KV. Solution combustion synthesis of nanoscale materials. Chem Rev., 2016, 116(23): 14493.

[32]

Popkov VI, Almjasheva OV, Nevedomskiy VN, Pan-chuk VV, Semenov VG, Gusarov VV. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceram. Int., 2018, 44(17): 20906.

[33]

Y. Sui, F. Lu, X.Y. Liu, Y.D. Zhang, X.H. Sun, and C.S. Liu, A novel hexagonal YFeO3 3D nanomaterial with room temperature ferromagnetic properties prepared by self-assembling method, Results Mater., 10(2021), art. No. 100186.

[34]

Chen FX, Xie SL, Zhang JH, Liu R. Synthesis of spherical Fe3O4 magnetic nanoparticles by co-precipitation in choline chloride/urea deep eutectic solvent. Mater. Lett., 2013, 112: 177.

[35]

XM, Xie JM, Shu HM, Liu J, Yin CQ, Lin JM. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Mater. Sci. Eng. B, 2007, 138(3): 289.

[36]

Zhang SJ, Li C, Zhang X, Sun XZ, Wang K, Ma YW. High performance lithium-ion hybrid capacitors employing Fe3O4–graphene composite anode and activated carbon cathode. ACS Appl. Mater. Interfaces, 2017, 9(20): 17136.

[37]

Díez-García MI, Celorrio V, Calvillo L, Tiwari D, Gómez R, Fermín DJ. YFeO3 photocathodes for hydrogen evolution. Electrochim. Acta, 2017, 246: 365.

[38]

Ismael M, Elhaddad E, Taffa DH, Wark M. Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants. Catal. Today, 2018, 313: 47.

[39]

Z.H. Wu, J. Shen, W.L. Li, et al., Electron self-sufficient core-shell BiOCl@Fe–BiOCl nanosheets boosting Fe(III)/Fe(II) recycling and synergetic photocatalysis-Fenton for enhanced degradation of phenol, Appl. Catal. B, 330(2023), art. No. 122642.

[40]

Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-Ray Photoelectron Spectroscopy, 1992

[41]

Wu T, Liu Y, Zeng X, et al.. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces, 2016, 8(11): 7370.

[42]

Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3): 788.

[43]

Wen B, Cao MS, Hou ZL, et al.. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124.

[44]

Aharoni A. Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys., 1997, 81(2): 830.

[45]

R. Arias, P. Chu, and D.L. Mills, Dipole exchange spin waves and microwave response of ferromagnetic spheres, Phys. Rev. B, 71(2005), No. 22, art. No. 224410.

[46]

S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, and D.Y. He, Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals, J. Phys. D: Appl. Phys., 42(2009), No. 5, art. No. 055004.

[47]

M.Q. Huang, L. Wang, W.B. You, and R.C. Che, Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber, Small, 17(2021), No. 30, art. No. e2101416.

[48]

Meng XG, Wan YZ, Li QY, Wang J, Luo HL. The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films. Appl. Surf. Sci., 2011, 257(24): 10808.

[49]

Zong M, Huang Y, Zhao Y, et al.. One-pot simplified co-precipitation synthesis of reduced graphene oxide/Fe3O4 composite and its microwave electromagnetic properties. Mater. Lett., 2013, 106: 22.

[50]

Liu G, Tu JQ, Wu C, et al.. High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces, 2021, 13(17): 20459.

[51]

Chen YJ, Xiao G, Wang TS, et al.. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C, 2011, 115(28): 13603.

[52]

Zong M, Huang Y, Zhao Y, et al.. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites. RSC Adv., 2013, 3(45): 23638.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/