Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers
Yuntong Wang , Shengchong Hui , Zhaoxiaohan Shi , Zijing Li , Geng Chen , Tao Zhang , Xinyue Xie , Limin Zhang , Hongjing Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 738 -746.
Hydrogen bond-induced conduction loss for enhanced electromagnetic attenuation in deep eutectic gel absorbers
Gels and conductive polymer composites, including hydrogen bonds (HBs), have emerged as promising materials for electromagnetic wave (EMW) absorption across various applications. However, the relationship between conduction loss in EMW-absorbing materials and charge transfer in HB remains to be fully understood. In this study, we developed a series of deep eutectic gels to fine-tune the quantity of HB by adjusting the molar ratio of choline chloride (ChCl) and ethylene glycol (EG). Owing to the unique properties of deep eutectic gels, the effects of magnetic loss and polarization loss on EMW attenuation can be disregarded. Our results indicate that the quantity of HB initially increases and then decreases with the introduction of EG, with HB-induced conductive loss following similar patterns. At a ChCl and EG molar ratio of 2.4, the gel labeled G22-CE2.4 exhibited the best EMW absorption performance, characterized by an effective absorption bandwidth of 8.50 GHz and a thickness of 2.54 mm. This superior performance is attributed to the synergistic effects of excellent conductive loss and impedance matching generated by the optimal number of HB. This work elucidates the role of HB in dielectric loss for the first time and provides valuable insights into the optimal design of supramolecular polymer absorbers.
| [1] |
Z.H. Zhao, Y.C. Qing, L. Kong, et al., Advancements in microwave absorption motivated by interdisciplinary research, Adv. Mater., 36(2024), No. 4, art. No. 2304182. |
| [2] |
G.Y. Yu, G.F. Shao, R.P. Xu, Y. Chen, X.H. Zhu, and X.G. Huang, Metal-organic framework-manipulated dielectric genes inside silicon carbonitride toward tunable electromagnetic wave absorption, Small, 19(2023), No. 46, art. No. 2304694. |
| [3] |
X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538. |
| [4] |
|
| [5] |
Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), art. No. 5951. |
| [6] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci., 8(2021), No. 8, art. No. 2004640. |
| [7] |
G. Chen, H.S. Liang, J.J. Yun, L.M. Zhang, H.J. Wu, and J.Y. Wang, Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber, Adv. Mater., 35(2023), No. 49, art. No. 2305586. |
| [8] |
S.C. Hui, X. Zhou, L.M. Zhang, and H.J. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers, Adv. Sci., 11(2024), No. 6, art. No. 2307649. |
| [9] |
H.S. Liang, G. Chen, D. Liu, et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2212604. |
| [10] |
T. Cheng, D.X. Shen, M. Meng, et al., Efficient electron transfer across hydrogen bond interfaces by proton-coupled and -uncoupled pathways, Nat. Commun., 10(2019), art. No. 1531. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
T.J. Long, Y.X. Li, X. Fang, and J.Q. Sun, Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity, Adv. Funct. Mater., 28(2018), No. 44, art. No. 1804416. |
| [16] |
|
| [17] |
|
| [18] |
A. Shishov, A. Pochivalov, L. Nugbienyo, V. Andruch, and A. Bulatov, Deep eutectic solvents are not only effective extractants, Trends Anal. Chem., 129(2020), art. No. 115956. |
| [19] |
Y.J. Liang, K.F. Wang, J.J. Li, et al., Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors, Adv. Funct. Mater., 31(2021), No. 45, art. No. 2104963. |
| [20] |
M.K. Yan, X.Y. Li, and H.L. Lian, A stretchable, compressible and anti-freezing ionic gel based on a natural deep eutectic solvent applied as a strain sensor, J. Appl. Polym. Sci., 139(2022), No. 28, art. No. 52607. |
| [21] |
J.X. Wu, Q.H. Liang, X.L. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective, Adv. Funct. Mater., 31(2021), No. 22, art. No. 2011102. |
| [22] |
|
| [23] |
|
| [24] |
H. Zhang, N. Tang, X. Yu, M.H. Li, and J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater., 32(2022), No. 41, art. No. 2206305. |
| [25] |
Y.K. Shi, B.H. Wu, S.T. Sun, P.Y. Wu, Peeling–stiffening self-adhesive ionogel with superhigh interfacial toughness, Adv. Mater., 36(2024), No. 11, art. No. 2310576. |
| [26] |
K.Q. Fan, W.C. Wei, Z.Q. Zhang, et al., Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, Chem. Eng. J., 449(2022), art. No. 137878. |
| [27] |
P.Q. Yao, Q.W. Bao, Y. Yao, et al., Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor, Adv. Mater., 35(2023), No. 21, art. No. 2300114. |
| [28] |
|
| [29] |
|
| [30] |
G. Li, Z.H. Deng, M.K. Cai, et al., A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents, npj Flex. Electron., 5(2021), art. No. 23. |
| [31] |
Y. Zhang, Y.F. Wang, Y. Guan, and Y.J. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions, Nat. Commun., 13(2022), art. No. 6671. |
| [32] |
T. Zhou, Z. Qiao, M. Yang, et al., Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics, Biosens. Bioelectron., 231(2023), art. No. 115288. |
| [33] |
G. Ge, K. Mandal, R. Haghniaz, et al., Deep eutectic solvents - based ionogels with ultrafast gelation and high adhesion in harsh environments, Adv. Funct. Mater., 33(2023), art. No. 2207388. |
| [34] |
R.X. Wang, P.C. Chen, X.J. Zhou, et al., An eutectic gel based on polymerizable deep eutectic solvent with self-adhesive, self-adaptive cold and high temperature environments, Adv. Mater. Technol., 8(2023), art. No. 2201509. |
| [35] |
L.T. Fang, C. Zhang, W.J. Ge, et al., Facile spinning of tough and conductive eutectogel fibers via Li+-induced dense hydrogen-bond networks, Chem. Eng. J., 478(2023), art. No. 147405. |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Y. Zhang, C. Liu, S. Zhang, et al., Multiple dynamic interaction-enabled eutectogel with strong tissue adhesion, mechanical strength and temperature tolerance for transdermal drug delivery: Double monodentate coordination and π–π interaction, Chem. Eng. J., 476(2023), art. No. 146583. |
| [42] |
B. Yiming, Y. Han, Z.L. Han, et al., A mechanically robust and versatile liquid-free ionic conductive elastomer, Adv. Mater., 33(2021), No. 11, art. No. 2006111. |
| [43] |
Z.L. Han, P. Wang, Y.C. Lu, Z. Jia, S.X. Qu, and W. Yang, A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction, Sci. Adv., 8(2022), No. 8, art. No. 5066. |
| [44] |
C.B. Godiya, S. Kumar, and Y.H. Xiao, Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water, J. Hazard. Mater., 393(2020), art. No. 122417. |
| [45] |
J.Y. Cai, H. Zhao, H. Liu, et al., Magnetic field vertically aligned Co–MOF-74 derivatives/polyacrylamide hydrogels with bifunction of excellent electromagnetic wave absorption and efficient thermal conduction performances, Composites Part A, 176(2024), art. No. 107832. |
| [46] |
H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, and X.Y. Tian, Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A, 1(2013), No. 30, art. No. 8547. |
| [47] |
|
| [48] |
Y.C. Long, Z. Zhang, K. Sun, et al., Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility, Adv. Compos. Hybrid Mater., 6(2023), No. 5, art. No. 173. |
| [49] |
Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. |
University of Science and Technology Beijing
/
| 〈 |
|
〉 |