Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption

Wenxin Zhao , Meng Zhang , Yukun Miao , Chang Wang , Anguo Cui , Liying Yuan , Zeqing Miao , Xiaoqing Wang , Zhibo Wang , Haoyu Pang , Alan Meng , Zhenjiang Li , Ting Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 520 -533.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 520 -533. DOI: 10.1007/s12613-024-2911-y
Research Article

Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption

Author information +
History +
PDF

Abstract

Using SiC nanowires (SiCNWs) as the substrate, reflux–annealing and electrodeposition–carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe3O4 nanoparticles and amorphous nitrogen-doped carbon (NC) for the fabrication of SiCNWs@Fe3O4@NC nanocomposite. Comprehensive testing and characterization of this product provided valuable insights into the impact of structural and composition changes on its electromagnetic wave absorption performances. The optimized SiCNWs@Fe3O4@NC nanocomposite, which has 30wt% filler content and a corresponding thickness of 2.03 mm, demonstrates exceptional performance with the minimum reflection loss (RLmin) of −53.69 dB at 11.04 GHz and effective absorption bandwidth (EAB) of 4.4 GHz. The synergistic effects of the enhanced nanocomposite on electromagnetic wave absorption were thoroughly elucidated using the theories of multiple scattering, polarization relaxation, hysteresis loss, and eddy current loss. Furthermore, a multicomponent electromagnetic wave attenuation model was established, providing valuable insight into the design of novel absorbing materials and the enhancement of their absorption performances. This research demonstrated the significant potential of the SiCNWs@Fe3O4@NC nanocomposite as a highly efficient electromagnetic wave-absorbing material with potential applications in various fields, such as stealth technology and microwave absorption.

Cite this article

Download citation ▾
Wenxin Zhao, Meng Zhang, Yukun Miao, Chang Wang, Anguo Cui, Liying Yuan, Zeqing Miao, Xiaoqing Wang, Zhibo Wang, Haoyu Pang, Alan Meng, Zhenjiang Li, Ting Wang. Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 520-533 DOI:10.1007/s12613-024-2911-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ren LG, Wang YQ, Zhang X, He QC, Wu GL. Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres. Int. J. Miner. Metall. Mater., 2023, 30(3): 504.

[2]

Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642.

[3]

Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499.

[4]

J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.

[5]

Gao ZG, Yang K, Zhao ZH, et al.. Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective. Int. J. Miner. Metall. Mater., 2023, 30(3): 405.

[6]

C.X. Wang, Y. Liu, Z.R. Jia, W.R. Zhao, and G.L. Wu, Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption, Nano Micro Lett., 15(2022), No. 1, art. No. 13.

[7]

Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677.

[8]

Zhang SJ, Jia ZR, Cheng B, Zhao ZW, Lu F, Wu GL. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review. Adv. Compos. Hybrid Mater., 2022, 5(3): 2440.

[9]

Zhang M, Zhao LB, Zhao WX, et al.. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res., 2023, 16(2): 3558

[10]

L.B. Zhao, Y.Y. Guo, Y.X. Xie, et al., Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption, Appl. Surf. Sci., 592(2022), art. No. 153324.

[11]

Shi RR, Lin W, Liu Z, et al.. Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air. Int. J. Miner. Metall. Mater., 2023, 30(9): 1809.

[12]

Y.X. Xie, Y.Y. Guo, T.T. Cheng, et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite, Chem. Eng. J., 457(2023), art. No. 141205.

[13]

Li GM, Xue XJ, Mao LT, et al.. Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents. Int. J. Miner. Metall. Mater., 2023, 30(3): 591.

[14]

M. Zhang, H.L. Ling, T. Wang, et al., An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism, Nano Micro Lett., 14(2022), No. 1, art. No. 157.

[15]

Q. Yu, Y.Y. Wang, P. Chen, W.C. Nie, H.L. Chen, and J. Zhou, Reduced graphene oxide-wrapped super dense Fe3O4 nanoparticles with enhanced electromagnetic wave absorption properties, Nanomaterials, 9(2019), No. 6, art. No. 845.

[16]

Fan XM, Yin XW. Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Adv. Compos. Hybrid Mater., 2018, 1(4): 685.

[17]

C.L. Hu, W.H. Hong, X.J. Xu, S.F. Tang, S.Y. Du, and H.M. Cheng, Sandwich-structured C/C–SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration, Sci. Rep., 7(2017), No. 1, art. No. 13120.

[18]

Wei J, Zhang YB, Li XT, et al.. Recent progress in synthesis, growth mechanisms, and electromagnetic wave absorption properties of silicon carbide nanowires. Ceram. Int., 2022, 48(24): 35966.

[19]

Li QY, Lu YH, Shao ZY. Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber. Int. J. Miner. Metall. Mater., 2023, 30(3): 548.

[20]

Gu C, Guo CQ, Dong XC, et al.. Core-shell structured iron-containing ceramic nanoparticles: Facile fabrication and excellent electromagnetic absorption properties. J. Am. Ceram. Soc., 2019, 102(12): 7098.

[21]

Feng TT, Cui ZJ, Guo PF, et al.. Engineering Ru nanoparticles embedded in 2D N-doped carbon nanosheets decorated with 2D Fe3O4–Fe3C heterostructures for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen Energy, 2023, 48(41): 15522.

[22]

K.X. Zhang, X.S. Guo, Y.X. Cheng, F.Q. Zhang, and L.L. He, TEM study on the morphology and interface microstructure of C/C-SiC composites fabricated by liquid infiltration, Mater. Charact., 175(2021), art. No. 111055.

[23]

Zhou P, Chen JH, Liu M, Jiang P, Li B, Hou XM. Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int. J. Miner. Metall. Mater., 2017, 24(7): 804.

[24]

Wu HK, Zhang Y, Yin R, Zhao W, Li XM, Qian L. Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv. Compos. Hybrid Mater., 2018, 1(1): 168.

[25]

Zhou N, An QD, Xiao ZY, Zhai SR, Shi Z. Solvo-thermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Adv., 2017, 7(71): 45156.

[26]

T. Sato, K. Nagaoka, S. Kobayashi, J. Manjanna, and T. Murakami, Temperature dependence of magnetic hysteresis scaling for cubic Fe3O4 nanoparticles, AIP Adv., 7(2017), No. 5, art. No. 056319.

[27]

Qiao MT, Lei XF, Ma Y, et al.. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res., 2018, 11(3): 1500.

[28]

Mifounde Bengono DA, Zhang B, Yao YY, et al.. Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Ionics, 2020, 26(4): 1695.

[29]

Shan JY, Wu XL, Li CF, et al.. Photocatalytic degradation of tetracycline hydrochloride by a Fe3O4/g-C3N4/rGO magnetic nanocomposite mechanism: Modeling and optimization. Environ. Sci. Pollut. Res., 2023, 30(3): 8098.

[30]

Gao T, Rong HW, Mahmoud KH, et al.. Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater., 2022, 5(2): 1158.

[31]

Hua YN, Wang C, Wang S, Xiao J. Poly(catechol) modified Fe3O4 magnetic nanocomposites with continuous high Fenton activity for organic degradation at neutral pH. Environ. Sci. Pollut. Res. Int., 2021, 28(44): 62690.

[32]

L.L. Xiang, X.S. Qi, Y.C. Rao, et al., A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption, Mater. Today Phys., 34(2023), art. No. 101030.

[33]

J.L. Liu, L.M. Zhang, and H.J. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 26, art. No. 2200544.

[34]

X.P. Zhang, Q.Y. Wang, Y.N. Tang, G.H. Fan, C.C. Hao, and Y. Liu, Decoration of conjugated polyacene quinone radical (PAQR) with Fe3O4 nanospheres achieving improved impedance matching and electromagnetic wave absorption, Mater. Today Phys., 41(2024), art. No. 101349.

[35]

Lv JL, Zhai SR, Gao C, Zhou N, An QD, Zhai B. Synthesis of lightweight, hierarchical cabbage-like composites as superior electromagnetic wave absorbent. Chem. Eng. J., 2016, 289: 261.

[36]

Wang YF, Han L, Zhou XH, et al.. Lightweight, compressible, and multifunctional organic-inorganic nanofibrous aerogels for enhanced microwave absorption. ACS Appl. Nano Mater., 2024, 7(4): 4130.

[37]

Li YY, Gai LX, Song GL, An QD, Xiao ZY, Zhai SR. Enhanced properties of CoS2/Cu2S embedded N/S co-doped mesh-like carbonaceous composites for electromagnetic wave absorption. Carbon, 2022, 186: 238.

[38]

Wang YF, Zhou XH, Han L, et al.. In-situ growth of magnetic nanoparticles on honeycomb-like porous carbon nanofibers as lightweight and efficient microwave absorbers. Ceram. Int., 2023, 49(22): 35476.

[39]

Zhou XF, Jia ZR, Zhang XX, et al.. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol., 2021, 87: 120.

[40]

M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. e2105553.

[41]

Shu XF, Wang S, Wu WJ, et al.. Polyaniline-based networks combined with Fe3O4 hollow spheres and carbon balls for excellent electromagnetic wave absorption. Ceram. Int., 2022, 48(1): 811.

[42]

M.X. Liu, H. Wu, Y.J. Wang, et al., Flexible cementite/ferroferric oxide/silicon dioxide/carbon nanofibers composite membrane with low-frequency dispersion weakly negative permittivity, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 217.

[43]

Y.P. Duan, Z.R. Li, X.J. Liu, et al., Optimized microwave absorption properties of FeCoCrAlGdx high-entropy alloys by inhibiting nanograin coarsening, J. Alloys Compd., 921(2022), art. No. 166088.

[44]

S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925.

[45]

J. Liu, J.Q. Tao, L.L. Gao, et al., Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption, Chem. Eng. J., 433(2022), art. No. 134484.

[46]

Ren XY, Song YH, Gao ZG, Wu YL, Jia ZR, Wu GL. Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 134: 254.

[47]

C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626.

[48]

S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698.

[49]

S.J. Zhang, D. Lan, J.J. Zheng, et al., Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption, Int. J. Miner. Metall. Mater., (2024).

[50]

Y.P. Duan, L.L. Song, Y.L. Cui, H.F. Pang, X.F. Zhang, and T.M. Wang, FeCoNiCuAl high entropy alloys microwave absorbing materials: Exploring the effects of different Cu contents and annealing temperatures on electromagnetic properties, J. Alloys Compd., 848(2020), art. No. 156491.

[51]

J.X. Zhou, D. Lan, F. Zhang, et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band, Small, 19(2023), No. 52, art. No. 2304932.

[52]

X.J. Liu, Y.P. Duan, Y. Guo, et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption, Nano Micro Lett., 14(2022), No. 1, art. No. 142.

[53]

Zhou ZH, Lan D, Ren JW, et al.. Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol., 2024, 185: 165.

[54]

Wang ZJ, Wu LN, Zhou JG, Cai W, Shen BZ, Jiang ZH. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C, 2013, 117(10): 5446.

[55]

Zhang KC, Gao XB, Zhang Q, Li TP, Chen H, Chen XF. Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J. Alloys Compd., 2017, 721: 268.

[56]

Y.P. Duan, B. Ma, L.X. Huang, X.R. Ma, and M. Wang, Motheye-inspired gradient impedance microwave absorption materials with multiband compatible stealth characteristic, Adv. Mater. Technol., 8(2023), No. 14, art. No. 2202172.

[57]

X. Yang, Y.P. Duan, S.Q. Li, et al., Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring, Nano Micro Lett., 14(2021), No. 1, art. No. 28.

[58]

M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. e2201118.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

294

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/