Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
Xinxin Nie , Qian Yin , Manchao He , Qi Wang , Hongwen Jing , Bowen Zheng , Bo Meng , Tianci Deng , Zheng Jiang , Jiangyu Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (11) : 2417 -2434.
Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading. Cubic layered samples with dimensions of 100 mm × 100 mm × 100 mm were casted using rock-like materials, with anisotropic angle (α) and joint roughness coefficient (JRC) ranging from 15° to 75° and 2–20, respectively. The direct shear tests were conducted under the application of initial normal stress (σn) ranging from 1–4 MPa. The test results indicate significant differences in mechanical properties, acoustic emission (AE) responses, maximum principal strain fields, and ultimate failure modes of layered samples under different test conditions. The peak stress increases with the increasing α and achieves a maximum value at α = 60° or 75°. As σn increases, the peak stress shows an increasing trend, with correlation coefficients R2 ranging from 0.918 to 0.995 for the linear least squares fitting. As JRC increases from 2–4 to 18–20, the cohesion increases by 86.32% when α = 15°, while the cohesion decreases by 27.93% when α = 75°. The differences in roughness characteristics of shear failure surface induced by α result in anisotropic post-peak AE responses, which is characterized by active AE signals when α is small and quiet AE signals for a large α. For a given JRC = 6–8 and σn = 1 MPa, as α increases, the accumulative AE counts increase by 224.31% (α increased from 15° to 60°), and then decrease by 14.68% (α increased from 60° to 75°). The shear failure surface is formed along the weak interlayer when α = 15° and penetrates the layered matrix when α = 60°. When α = 15°, as σn increases, the adjacent weak interlayer induces a change in the direction of tensile cracks propagation, resulting in a stepped pattern of cracks distribution. The increase in JRC intensifies roughness characteristics of shear failure surface for a small α, however, it is not pronounced for a large α. The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
L.R. Ban, W.S. Du, C.Z. Qi, and C. Zhu, Modified 2D roughness parameters for rock joints at two different scales and their correlation with JRC, Int. J. Rock Mech. Min. Sci., 137(2021), art. No. 104549. |
| [5] |
N.N. Li, Y.Q. Zhou, and H.B. Li, Experimental study for the effect of joint surface characteristics on stress wave propagation, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 3, art. No. 50. |
| [6] |
H.J. Su, Y. Jiang, L.Y. Yu, W.B. Wang, and Q.Z. Guo, Dynamic fracture and deformation responses of rock mass specimens containing 3D printing rough joint subjected to impact loading, Geomech. Geophys. Geo Energy Geo Resour., 8(2022), No. 6, art. No. 186. |
| [7] |
X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Influence of joint roughness on the shear properties of energy-absorbing bolt, Int. J. Rock Mech. Min. Sci., 163(2023), art. No. 105322. |
| [8] |
M.Y. Zhai, L. Xue, H.R. Chen, C. Xu, and Y. Cui, Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from acoustic emission characteristics, Eng. Fract. Mech., 258(2021), art. No. 108046. |
| [9] |
F. Jiang, G. Wang, P. He, et al., Mechanical failure analysis during direct shear of double-joint rock mass, Bull. Eng. Geol. Environ., 81(2022), No. 10, art. No. 410. |
| [10] |
Z.B. Zhong, R.G. Deng, J. Zhang, and X.Z. Hu, Fracture properties of jointed rock infilled with mortar under uniaxial compression, Eng. Fract. Mech., 228(2020), art. No. 106822. |
| [11] |
J.T. Zhang, M. Kikumoto, H. Yasuhara, S. Ogata, and K. Kishida, Modeling the shearing behavior of discontinuous rock mass incorporating dilation of joint aperture, Int. J. Rock Mech. Min. Sci., 153(2022), art. No. 105101. |
| [12] |
J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. |
| [13] |
J.Y. Wu, H.S. Wong, H. Zhang, Q. Yin, H.W. Jing, and D. Ma, Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement, Cem. Concr. Compos., 145(2024), art. No. 105345. |
| [14] |
|
| [15] |
|
| [16] |
Y. Tian, X.Y. Shu, H.M. Tian, L.K. He, Y. Jin, and M. Huang, Effect of horizontal stress on the mesoscopic deformation and failure mechanism of layered surrounding rock masses in tunnels, Eng. Fail. Anal., 148(2023), art. No. 107226. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
K. Du, X.F. Li, M. Tao, and S.F. Wang, Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104411. |
| [25] |
K. Du, X.F. Li, S.Y. Wang, M. Tao, G. Li, and S.F. Wang, Compression-shear failure properties and acoustic emission (AE) characteristics of rocks in variable angle shear and direct shear tests, Measurement, 183(2021), art. No. 109814. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
X.G. Liu, W.C. Zhu, Y.X. Liu, Q.L. Yu, and K. Guan, Characterization of rock joint roughness from the classified and weighted uphill projection parameters, Int. J. Geomech., 21(2021), No. 5, art. No. 04021052. |
| [31] |
X.Z. Wu, H.F. Zheng, and Y.J. Jiang, Study on the evolution law of rock joint shear stiffness during shearing process through loading-unloading tests, Tunn. Undergr. Space Technol., 127(2022), art. No. 104584. |
| [32] |
|
| [33] |
|
| [34] |
P. Li, M.F. Cai, Y.B. Gao, M. Gorjian, S.J. Miao, and Y. Wang, Macro/mesofracture and instability behaviors of jointed rocks containing a cavity under uniaxial compression using AE and DIC techniques, Theor. Appl. Fract. Mech., 122(2022), art. No. 103620. |
| [35] |
|
| [36] |
Q. Yin, J.Y. Wu, C. Zhu, M.C. He, Q.X. Meng, and H.W. Jing, Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions, Geomech. Geophys. Geo Energy Geo Resour., 7(2021), No. 2, art. No. 35. |
| [37] |
|
| [38] |
|
| [39] |
T.T. Luo, D. Zou, X.D. Zhao, C.Y. Zhang, T. Han, and Y.C. Song, Strength behaviours of methane hydrate-bearing marine sediments in the South China Sea, J. Nat. Gas Sci. Eng., 100(2022), art. No. 104476. |
| [40] |
Y. Zhang, J.Y. Lu, W. Han, Y.W. Xiong, and J.S. Qian, Effects of moisture and stone content on the shear strength characteristics of soil-rock mixture, Materials, 16(2023), No. 2, art. No. 567. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
G.H. Hu, Q. Yang, X. Qiu, et al., Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP, Constr. Build. Mater., 344(2022), art. No. 128278. |
| [47] |
J.W. Ying, J.Z. Huang, and J.Z. Xiao, Test and theoretical prediction of chloride ion diffusion in recycled fine aggregate mortar under uniaxial compression, Constr. Build. Mater., 321(2022), art. No. 126384. |
/
| 〈 |
|
〉 |