High-entropy ferrite with tunable magnetic properties for excellent microwave absorption

Yuying Huo , Zhengyan Wang , Yanlan Zhang , Yongzhen Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 668 -677.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 668 -677. DOI: 10.1007/s12613-024-2883-y
Research Article

High-entropy ferrite with tunable magnetic properties for excellent microwave absorption

Author information +
History +
PDF

Abstract

High-entropy design is attracting growing interest as it offers unique structures and unprecedented application potential for materials. In this article, a novel high-entropy ferrite (CoNi) x/2(CuZnAl)(1−x)/3Fe2O4 (x = 0.25, 0.34, 0.40, 0.50) with a single spinel phase of space group

F d 3 ¯ m
was successfully developed by the solid-state reaction method. By tuning the Co–Ni content, the magnetic properties of the material, especially the coercivity, changed regularly, and the microwave absorption properties were improved. In particular, the effective absorption bandwidth of the material increased from 4.8 to 7.2 GHz, and the matched thickness decreased from 3.9 to 2.3 mm, while the minimum reflection loss remained below −20 dB. This study provides a practical method for modifying the properties of ferrites used to absorb electromagnetic waves.

Cite this article

Download citation ▾
Yuying Huo, Zhengyan Wang, Yanlan Zhang, Yongzhen Wang. High-entropy ferrite with tunable magnetic properties for excellent microwave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 668-677 DOI:10.1007/s12613-024-2883-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Namdari A, Li ZJ. A review of entropy measures for uncertainty quantification of stochastic processes. Adv. Mech. Eng., 2019, 11(6): 1.

[2]

Yeh JW, Chen SK, Lin SJ, et al.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[3]

S. Akrami, P. Edalati, M. Fuji, and K. Edalati, High-entropy ceramics: Review of principles, production and applications, Mater. Sci. Eng. R, 146(2021), art. No. 100644.

[4]

Y. Xue, X.Q. Zhao, Z.Y. Bu, et al., Blocking effect in Nb-engineered high-entropy oxides with strengthened grain boundary corrosion resistance, Chem. Eng. J., 457(2023), art. No. 141346.

[5]

Fan D, Zhong X, Zhang ZZ, et al.. Investigation on behavior and mechanism of enhanced water vapor corrosion resistance for (Lu0.25Yb0.25Er0.25 Y0.25)2SiO5 environmental barrier coating. J. Eur. Ceram. Soc., 2023, 43(8): 3737.

[6]

Liew SL, Ni XP, Wei FX, et al.. High-entropy fluorite oxides: Atomic stabiliser effects on thermal-mechanical properties. J. Eur. Ceram. Soc., 2022, 42(14): 6608.

[7]

T.S. Park, N.K. Adomako, A.N. Ashong, Y.K. Kim, S.M. Yang, and J.H. Kim, Interfacial structure and physical properties of high-entropy oxide coatings prepared via atmospheric plasma spraying, Coatings, 11(2021), No. 7, art. No. 755.

[8]

Zhang DB, Yu Y, Feng XL, Tian ZY, Song RQ. Thermal barrier coatings with high-entropy oxide as a top coat. Ceram. Int., 2022, 48(1): 1349.

[9]

B.B. Yue, W.H. Dai, X.L. Zhang, et al., Deformation behavior of high-entropy oxide (Mg, Co, Ni, Cu, Zn)O under extreme compression, Scripta Mater., 219(2022), art. No. 114879.

[10]

Liu SX, Du MR, Ge YF, et al.. Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping. J. Mater. Sci., 2022, 57(16): 7863.

[11]

C.M. Rost, E. Sachet, T. Borman, et al., Entropy-stabilized oxides, Nat. Commun., 6(2015), art. No. 8485.

[12]

X.H. Liang, J.Y. Hwang, and Y.K. Sun, Practical cathodes for sodium-ion batteries: Who will take the crown?, Adv. Energy Mater., 13(2023), No. 37, art. No. 2301975.

[13]

Tian KH, He H, Li X, et al.. Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. J. Mater. Chem. A, 2022, 10(28): 14943.

[14]

Li X, Ma JX, Chen KP, Li CW, Zhang XW, An LN. Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics. Ceram. Int., 2022, 48(9): 12848.

[15]

Q. Yang, G.Q. Wang, H.D. Wu, et al., A high-entropy perovskite cathode for solid oxide fuel cells, J. Alloys Compd., 872(2021), art. No. 159633.

[16]

Q.B. An, S. Li, J.J. Zhou, S.J. Ji, Z.S. Wen, and J.C. Sun, Novel spinel multicomponent high-entropy oxide as anode for lithiumion batteries with excellent electrochemical performance, Adv. Eng. Mater., 25(2023), No. 20, art. No. 2300585.

[17]

C. Liu, J.Q. Bi, L.L. Xie, X.C. Gao, and L.J. Meng, Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction, Mater. Today Commun., 35(2023), art. No. 106315.

[18]

C. Cui, R.H. Guo, E.H. Ren, et al., MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave, Chem. Eng. J., 405(2021), art. No. 126626.

[19]

M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, and S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni–Zn ferrite, Sci. Rep., 11(2021), No. 1, art. No. 9468.

[20]

B. Zhao, Y.Q. Du, Z.K. Yan, et al., Structural defects in phaseregulated high-entropy oxides toward superior microwave absorption properties, Adv. Funct. Mater., 33(2023), No. 1, art. No. 2209924.

[21]

Ma JB, Zhao B, Xiang HM, et al.. High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption. J. Adv. Ceram., 2022, 11(5): 754.

[22]

N. Aggarwal and S.B. Narang, Effect of co-substitution of Co–Zr on electromagnetic properties of Ni–Zn spinel ferrites at microwave frequencies, J. Alloys Compd., 866(2021), art. No. 157461.

[23]

Z. Sun, Y.J. Zhao, C. Sun, Q. Ni, C.Z. Wang, and H.B. Jin, High entropy spinel-structure oxide for electrochemical application, Chem. Eng. J., 431(2022), art. No. 133448.

[24]

Nakamura H, Shinozaki K, Okumura T, Nomura K, Akai T. Massive red shift of Ce3+ in Y3Al5O12 incorporating superhigh content of Ce. RSC Adv., 2020, 10(21): 12535. 9051217

[25]

Y.Y. Zheng, Z.W. Ge, H.C. Sun, et al., The role of oxygen vacancy in CaO–Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance, Chem. Eng. J., 481(2024), art. No. 147955.

[26]

R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, and F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method, Sci. Rep., 4(2014), art. No. 7493.

[27]

M.K. He, J.W. Hu, H. Yan, et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity, Adv. Funct. Mater., (2024), art. No. 2316691.

[28]

Hossain MD, Jamil ATMK, Hossain MS, et al.. Investigation on structure, thermodynamic and multifunctional properties of Ni–Zn–Co ferrite for Gd3+ substitution. RSC Adv., 2022, 12(8): 4656. 8981410

[29]

Z.F. Tong, Q.R. Yao, J.Q. Deng,et al., Effects of Ni-doping on microstructure, magnetic and microwave absorption properties of CoFe2O4, Mater. Sci. Eng. B, 268(2021), art. No. 115092.

[30]

Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, and G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites, Adv. Funct. Mater., 32(2022), No. 34, art. No. 2204499.

[31]

M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci.,8(2021), No. 8, art. No. 2004640.

[32]

Liu Y, Qin JN, Lu LL, Xu J, Su XL. Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int. J. Miner. Metall. Mater., 2023, 30(3): 525.

[33]

Mohammadabadi FH, Masoudpanah SM, Alamolhoda S, Koohdar HR. Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1−x(CoxFe2O4)/graphene nanocomposites. J. Mater. Res. Technol., 2021, 14: 1099.

[34]

Mohapatra PP, Singh HK, Kiran MSRN, Dobbidi P. Co substituted Ni–Zn ferrites with tunable dielectric and magnetic response for high-frequency applications. Ceram. Int., 2022, 48(19): 29217.

[35]

Dai GH, Deng RX, You X, Zhang T, Yu Y, Song LX. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in situ dual phases. J. Mater. Sci. Technol., 2022, 116: 11.

[36]

Feng X, Yin PF, Zhang LM, et al.. Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2023, 30(3): 559.

[37]

Wu DD, Zhang HX, Wang ZY, Zhang YL, Wang YZ. 3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption. New Carbon Mater., 2023, 38(6): 1035.

[38]

Guan GG, Gao GJ, Xiang J, Yang JN, Li XQ, Zhang KY. A novel three-dimensional Fe3SnC/C hybrid nanofiber absorber for lightweight and highly-efficient microwave absorption. Phys. Chem. Chem. Phys., 2020, 22(45): 26104.

[39]

Kong L, Luo SH, Zhang SY, Zhang GQ, Liang Y. Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption. Int. J. Miner. Metall. Mater., 2023, 30(3): 570.

[40]

H.J. Wu, D. Lan, B. Li, et al., High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications, Composites Part B, 179(2019), art. No. 107524.

[41]

Tahamipoor M, Hekmatara H. Superior microwave absorption ability of CuFe2O4/MWCNT at whole Ku-band and half X-band. Phys. Chem. Chem. Phys., 2023, 25(18): 13145.

[42]

Mao D, Zhang Z, Yang M, Wang ZM, Yu RB, Wang D. Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties. Int. J. Miner. Metall. Mater., 2023, 30(3): 581.

[43]

Zhang WM, Xiang HM, Dai FZ, Zhao B, Wu SJ, Zhou YC. Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). J. Adv. Ceram., 2022, 11(4): 545.

[44]

H.X. Zhang, Z.Y. Wang, D.D. Wu, Y.L. Zhang, and Y.Z. Wang, Carboxymethyl cellulose-derived porous carbon aerogel decorated with Fe3O4–Fe nanoparticles for tunable microwave absorption, Diam. Relat. Mater., 139(2023), art. No. 110405.

[45]

Zhang YF, Ji Z, Chen K, Jia CC, Yang SW, Wang MY. Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder. Int. J. Miner. Metall. Mater., 2017, 24(2): 216.

[46]

F.S. Li, N.N. Wu, H. Kimura, et al., Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation, Nano Micro Lett., 15(2023), art. No. 220.

[47]

Quan B, Liang XH, Ji GB, et al.. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd., 2017, 728: 1065.

[48]

Meng X, Lei WJ, Yang WW, Liu YQ, Yu YS. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance. J. Colloid Interface Sci., 2021, 600: 382.

[49]

Tong GX, Yuan JH, Wu WH, et al.. Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEng-Comm, 2012, 14(6): 2071.

[50]

Lv HP, Wu C, Qin FX, Peng HX, Yan M. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption. J. Mater. Sci. Technol., 2021, 90: 1.

[51]

Mu Y, Ma ZH, Liang HS, Zhang LM, Wu HJ. Ferrite-based composites and morphology-controlled absorbers. Rare Met, 2022, 41(9): 2943.

[52]

Liu XF, Hao CC, He LH, et al.. Yolk-shell structured Co–C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res., 2018, 11(8): 4169.

[53]

L.Q. Jin, P.S. Yi, L. Wan, et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric–magnetic synergy toward wideband electromagnetic wave absorption, Chem. Eng. J., 427(2022), art. No. 130940.

[54]

J. Gao, Z.J. Ma, F.L. Liu, X.Y. Weng, and K.Y. Meng, Preparation and microwave absorption properties of Gd–Co ferrite@silica@carbon multilayer core-shell structure composites, Chem. Eng. J., 446(2022), art. No. 137157.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

457

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/