Iron–nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption

Yi Hu , Yijia Zhou , Lijia Liu , Qiang Wang , Chunhong Zhang , Hao Wei , Yudan Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 578 -590.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 578 -590. DOI: 10.1007/s12613-024-2863-2
Research Article

Iron–nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption

Author information +
History +
PDF

Abstract

Herein, an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound (either melamine or imidazole) through a direct Friedel–Crafts reaction, which led to the formation of nitrogen-containing hypercrosslinked ferrocene polymer precursors (HCP-FCs). Subsequent carbonization of these precursors results in the production of iron–nitrogen-doped porous carbon absorbers (Fe–NPCs). The Fe–NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres. The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching. The uniform distribution of Fe–N xC, N dipoles, and α-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon, providing the absorber with numerous polarization sites and a conductive network. The electromagnetic wave absorption performance of the specially designed Fe–NPC-M2 absorbers is satisfactory, revealing a minimum reflection loss of −55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm. By utilizing hypercrosslinked polymers (HCPs) as precursors, a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.

Cite this article

Download citation ▾
Yi Hu, Yijia Zhou, Lijia Liu, Qiang Wang, Chunhong Zhang, Hao Wei, Yudan Wang. Iron–nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 578-590 DOI:10.1007/s12613-024-2863-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Yadav and R. Panwar, Multilayer gradient perforated radar absorbing structure for stealth applications, IEEE Trans. Magn., 58(2022), No. 2, art. No. 2800305.

[2]

Liu HK, Yang RB, Yen KD. Radar-absorbing structures with reduced graphene oxide papers fabricated under various processing parameters. J. Electron. Mater., 2022, 51(3): 985.

[3]

Zhang HX, Sun KG, Sun KK, Chen L, Wu GL. Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 158: 242.

[4]

Y. Wu, Y. Zhao, M. Zhou, et al., Ultrabroad microwave absorption ability and infrared stealth property of nano–micro CuS@rGO lightweight aerogels, Nano Micro Lett., 14(2022), No. 1, art. No. 171.

[5]

S.J. Wang, X. Zhang, Y.X. Tang, et al., Facile fabrication of biomass chitosan-derived magnetic carbon aerogels as multifunctional and high-efficiency electromagnetic wave absorption materials, Carbon, 216(2024), art. No. 118528.

[6]

S.K. Hou, Y. Wang, F. Gao, et al., A novel approach to electromagnetic wave absorbing material design: Utilizing nano-an-tenna arrays for efficient electromagnetic wave capture, Chem. Eng. J., 471(2023), art. No. 144779.

[7]

Q.Q. Han, S. Wang, X. Cheng, X.S. Du, H.B. Wang, and Z.L. Du, Self-healing polyurethane coating based on porous carbon/Ni hybrid composites for electromagnetic wave absorption, Composites Part A., 175(2023), art. No. 107830.

[8]

Z.Y. Huang, H.H. Chen, S.T. Xu, et al., Graphene-based composites combining both excellent terahertz shielding and stealth performance, Adv. Opt. Mater., 6(2018), No. 23, art. No. 1801165.

[9]

Luo JH, Li XP, Yan WX, Shu PC, Mei J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon, 2023, 205: 552.

[10]

X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220.

[11]

Li QY, Liu LY, Kimura H, et al.. Restricted growth of molybdenum carbide nanoparticles in hierarchically porous nitrogen-doped carbon matrix for boosting electromagnetic wave absorption performance. J. Colloid Interface Sci., 2024, 655: 634.

[12]

Y.Y. Dou, N. Liu, X.Y. Zhang, W.T. Jiang, X.H. Jiang, and L.M. Yu, Synthesis of polymer-derived N, O-doped bowl-like hollow carbon microspheres for improved electromagnetic wave absorption using controlled template pyrolysis, Chem. Eng. J., 463(2023), art. No. 142398.

[13]

M.R. Liu, W.T. Jiang, X.H. Jiang, and L.M. Yu, Nitrogen-doped lychee-like saccharide-based carbon microspheres with high-performance microwave absorption, Diamond Relat. Mater., 142(2024), art. No. 110725.

[14]

Wang SP, Liu QC, Li SK, Huang FZ, Zhang H. Entropy engineering enhances the electromagnetic wave absorption of high-entropy transition metal dichalcogenides/N-doped carbon nanofiber composites. Mater. Horiz., 2024, 11(4): 1088.

[15]

L.P. Wu, K.M. Zhang, J.Y. Shi, et al., Metal/nitrogen Co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption, Composites Part B., 228(2022), art. No. 109424.

[16]

X.C. Zhang, B. Li, J. Xu, et al., Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2210456.

[17]

X.C. Zhang, Y.N. Shi, J. Xu, et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption, Nano Micro Lett., 14(2021), No. 1, art. No. 27.

[18]

H.S. Liang, G. Chen, D. Liu, et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni singleatoms model absorber, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2212604.

[19]

Y.L. Zhang, K.P. Ruan, K. Zhou, and J.W. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding, Adv. Mater., 35(2023), No. 16, art. No. 2211642.

[20]

Jiang ZY, Si HX, Li Y, et al.. Reduced graphene oxide@car-bon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res., 2022, 15(9): 8546.

[21]

Yu YD, Fang Y, Hu Q, Shang XN, Tang CC, Meng FB. Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. J. Mater. Chem. C, 2022, 10(3): 983.

[22]

X.B. Huang, Y.T. Wang, Z.C. Lou, Y.X. Chen, Y.J. Li, and H.L. Lv, Porous, magnetic carbon derived from bamboo for microwave absorption, Carbon, 209(2023), art. No. 118005.

[23]

Lee J M, Briggs ME, Hasell T, Cooper AI. Hyperpor-ous carbons from hypercrosslinked polymers. Adv. Mater., 2016, 28(44): 9804.

[24]

Tan LX, Tan BE. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev., 2017, 46(11): 3322.

[25]

Cheng Y, Ma YZ, Dang ZE, et al.. The efficient absorption of electromagnetic waves by tunable N-doped multi-cavity mesoporous carbon microspheres. Carbon, 2023, 201: 1115.

[26]

Liu Y, Fan XL, Jia XK, et al.. Preparation of magnetic hyper-cross-linked polymers for the efficient removal of antibiotics from water. ACS Sustainable Chem. Eng., 2018, 6(1): 210.

[27]

K.X. Sang, Y.D. Wang, Y.D. Wang, et al., Hypercrosslinked phenylalaninol for efficient uranium adsorption from water, Sep. Purif. Technol., 305(2023), art. No. 122292.

[28]

T. Mandal, A. Kumar, J. Panda, T. Kumar Dutta, and J. Choudhury, Directly knitted hierarchical porous organometallic polymer-based self-supported single-site catalyst for CO2 hydrogenation in water, Angew. Chem. Int. Ed., 62(2023), No. 50, art. No. e202314451.

[29]

Hou SS, Razzaque S, Tan BE. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polym. Chem., 2019, 10(11): 1299.

[30]

Wang XY, Mu P, Zhang C, et al.. Control synthesis of tubular hyper-cross-linked polymers for highly porous carbon nan-otubes. ACS Appl. Mater. Interfaces, 2017, 9(24): 20779.

[31]

B. Ding, Z.J. Fan, Q.Y. Lin, et al., Confined pyrolysis of ZIF-8 polyhedrons wrapped with graphene oxide nanosheets to prepare 3D porous carbon heterostructures, Small Methods, 3(2019), No. 11, art. No. 1900277.

[32]

W. Kiciński, S. Dyjak, and M. Gratzke, Pyrolysis of porous organic polymers under a chlorine atmosphere to produce het-eroatom-doped microporous carbons, Molecules, 26(2021), No. 12, art. No. 3656.

[33]

Cheng JB, Zhao HB, Zhang AN, Wang YQ, Wang YZ. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. J. Mater. Sci. Technol., 2022, 126: 266.

[34]

Li SS, Tang XW, Zhang YW, et al.. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces, 2022, 14(6): 8297.

[35]

Z.C. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571.

[36]

Y. Guo, Y.P. Duan, X.J. Liu, et al., Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower-frequency microwave absorption, Small, 20(2023), No.17, art. No. 2308809.

[37]

Li Y, Qin YS, Wu GL, Zheng YC, Ban QF. Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption. J. Colloid Interface Sci., 2022, 623: 1002.

[38]

Wang YL, Zhao PY, Liang BL, Chen K, Wang GS. Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon, 2023, 202: 66.

[39]

Zhang X, Tian XL, Liu C, et al.. MnC–MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon, 2022, 194: 257.

[40]

Zhou SZ, Zhou GY, Jiang SH, Fan PC, Hou HQ. Flexible and refractory tantalum carbide–carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett., 2017, 200: 97.

[41]

Duan GG, Fang H, Huang CB, Jiang SH, Hou HQ. Microstructures and mechanical properties of aligned electro-spun carbon nanofibers from binary composites of polyacryloni-trile and polyamic acid. J. Mater. Sci., 2018, 53(21): 15096.

[42]

S. Dyjak, I. Wyrębska, A. Błachowski, et al., The role of heteroatoms in iron-assisted graphitization of hard carbons derived from synthetic polymers: The special case of sulfur-doping, Carbon, 218(2024), art. No. 118717.

[43]

F. Pan, L. Cai, Y.Y. Shi, et al., Heterointerface engineering of β-chitin/carbon nano-onions/Ni–P composites with boosted Maxwell–Wagner–Sillars effect for highly efficient electromagnetic wave response and thermal management, Nano Micro Lett., 14(2022), No. 1, art. No. 85.

[44]

Liu ZY, Tian HL, Xu RX, et al.. Magnetic crystallite-decorated hollow multi-cavity carbon nanosheet spheres for superior electromagnetic absorption. Carbon, 2023, 205: 138.

[45]

Xu SJ, Luo YL, Tan BE. Recent development of hypercrosslinked microporous organic polymers. Macromol. Rapid Commun., 2013, 34(6): 471.

[46]

Gang H, Deng H, Yan L, et al.. Surface redox pseudocapacit-ance boosting Fe/Fe3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deioniza-tion. J. Colloid Interface Sci., 2023, 638: 252.

[47]

H.R. Yuan, B. Li, C.L. Zhu, Y. Xie, Y.J. Jiang, and Y.J. Chen, Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon, Appl. Phys. Lett., 116(2020), No. 15, art. No. 153101.

[48]

Han J, Zhu KJ, Liu P, Si YC, Chai YJ, Jiao LF. N-doped CoSb@C nanofibers as a self-supporting anode for highperformance K-ion and Na-ion batteries. J. Mater. Chem. A, 2019, 7(44): 25268.

[49]

Guo D, Yuan HR, Wang XC, Zhu CL, Chen YJ. Urchin-like amorphous nitrogen-doped carbon nanotubes encapsulated with transition-metal-alloy@graphene core@shell nano-particles for microwave energy attenuation. ACS Appl. Mater. Interfaces, 2020, 12(8): 9628.

[50]

Zhan YF, Xia L, Yang H, et al.. Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon, 2021, 175: 101.

[51]

Y.H. Zhang, H.X. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, and C.H. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance, J. Alloys Compd., 850(2021), art. No. 156680.

[52]

Wang JQ, Ren JQ, Li Q, Liu YF, Zhang QY, Zhang BL. Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface. Carbon, 2021, 184: 195.

[53]

Liu Y, Chen Z, Xie WH, Song SK, Zhang Y, Dong LJ. In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber. ACS Sustainable Chem. Eng., 2019, 7(5): 5318.

[54]

Wang LX, Guan YK, Qiu X, et al.. Efficient ferrite/Co/por-ous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J., 2017, 326: 945.

[55]

Wang YP, Lai YR, Wang SY, Jiang W. Controlled synthesis and electromagnetic wave absorption properties of core-shell Fe3O4@SiO2 nanospheres decorated graphene. Ceram. Int., 2017, 43(2): 1887.

[56]

Y. Chen, R. Qiang, Y.L. Shao, et al., Biomass-derived Fe/C composites for broadband electromagnetic wave response, J. Alloys Compd., 968(2023), art. No. 171952.

[57]

Liang LY, Li QM, Yan X, et al.. Multifunctional magnetic Ti3C2Tx, MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano, 2021, 15(4): 6622.

[58]

R. Magisetty, A.B. Raj, S. Datar, A. Shukla, and B. Kandasub-ramanian, Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application, J. Alloys Compd., 848(2020), art. No. 155771.

[59]

G.H. Fan, X.T. Song, X.P. Zhang, Q.Y. Wang, Y.N. Tang, and Y. Liu, Biomass-derived ferrous magnetic carbon-based nano-composites from loofah collaterals for excellent electromagnetic wave-absorbing materials, J. Alloys Compd., 969(2023), art. No. 172384.

[60]

Liang J, Chen J, Shen HQ, Hu KT, Zhao BN, Kong J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nano-composites with enhanced electromagnetic wave absorption. Chem. Mater., 2021, 33(5): 1789.

[61]

M.M. Zhang, Z.Y. Jiang, X.Y. Lv, et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability, J. Phys. D: Appl. Phys., 53(2020), No. 2, art. No. 02LT01.

[62]

X.F. Zhang, P.F. Guan, and X.L. Dong, Transform between the permeability and permittivity in the close-packed Ni nano-particles, Appl. Phys. Lett., 97(2010), No. 3, art. No. 033107.

[63]

Z.W. Zhang, Z.H. Cai, Z.Y. Wang, et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials, Nano Micro Lett., 13(2021), No. 1, art. No. 56.

[64]

R.X. Xu, D.W. Xu, Z. Zeng, and D. Liu, CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption, Chem. Eng. J., 427(2022), art. No. 130796.

[65]

Che RC, Peng LM, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater., 2004, 16(5): 401.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/