Novel wood-plastic composite fabricated via modified steel slag: Preparation, mechanical and flammability properties

Ling Zhao, Kai Zhao, Zhenwei Shen, Yifan Wang, Xiaojie Xia, Hao Zhang, Hongming Long

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (9) : 2110-2120.

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (9) : 2110-2120. DOI: 10.1007/s12613-024-2829-4
Research Article

Novel wood-plastic composite fabricated via modified steel slag: Preparation, mechanical and flammability properties

Author information +
History +

Abstract

A novel method was developed to enhance the utilization rate of steel slag (SS). Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane (KH550), we obtained modified SS (MSS), which was used to prepare MSS/wood-plastic composites (MSS/WPCs) by replacing talcum powder (TP). The composites were fabricated through melting blending and hot pressing. Their mechanical and combustion properties, which comprise heat release, smoke release, and thermal stability, were systematically investigated. MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics. Notably, MSS/WPC#50 (16wt% MSS) with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance. Compared with those of WPC#0 without MSS, the tensile, flexural, and impact strengths of MSS/WPC#50 were increased by 18.5%, 12.8%, and 18.0%, respectively. Moreover, the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%, the highest vertical burning rating at the V-1 level, and the lowest horizontal burning rate at 44.2 mm/min. The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50. However, the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties, possibly due to the weak grafting caused by SS powder agglomeration. These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.

Keywords

modified steel slag / wood-plastic composites / preparation method / mechanical property / flame retardant

Cite this article

Download citation ▾
Ling Zhao, Kai Zhao, Zhenwei Shen, Yifan Wang, Xiaojie Xia, Hao Zhang, Hongming Long. Novel wood-plastic composite fabricated via modified steel slag: Preparation, mechanical and flammability properties. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(9): 2110‒2120 https://doi.org/10.1007/s12613-024-2829-4

References

[1]
Ge SB, Zuo SD, Zhang ML, et al. Utilization of decayed wood for polyvinyl chloride/wood flour composites. J. Mater. Res. Technol., 2021, 12, 862.
CrossRef Google scholar
[2]
D. Jubinville, E. Esmizadeh, C. Tzoganakis, and T. Mekonnen, Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly loaded wood plastic composites, Composites B, 219(2021), art. No. 108873.
[3]
Zhou YH, Stanchev P, Katsou E, Awad S, Fan MZ. A circular economy use of recovered sludge cellulose in wood plastic composite production: Recycling and eco-efficiency assessment. Waste Manage., 2019, 99, 42.
CrossRef Google scholar
[4]
Ma YB, He H, Huang B, Jing HS, Zhao ZJ. In situ fabrication of wood flour/nano silica hybrid and its application in polypropylene-based wood-plastic composites. Polym. Compos., 2020, 41(2): 573.
CrossRef Google scholar
[5]
Mesko MF, Pereira RM, Scaglioni PT, Novo DLR. Single analysis of human hair for determining halogens and sulfur after sample preparation based on combustion reaction. Anal. Bioanal. Chem., 2019, 411(19): 4873.
CrossRef Google scholar
[6]
S. Huang, L. Wang, Y.C. Li, C.B. Liang, and J.L. Zhang, Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures, J. Appl. Polym. Sci., 138(2021), No. 27, art. No. 50649.
[7]
B.W. Liu, H.B. Zhao, and Y.Z. Wang, Advanced flame-retardant methods for polymeric materials, Adv. Mater., 34(2022), No. 46, art. No. 2107905.
[8]
Li SN, Zhong L, Huang S, Wang DF, Zhang FX, Zhang GX. A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polym. Degrad. Stab., 2019, 164, 145.
CrossRef Google scholar
[9]
Z.M. Xu, L.J. Duan, Y.B. Hou, et al., The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites, Composites Part A, 131(2020), art. No. 105815.
[10]
Zhao L, Zhang H, Xu WC, Shen ZW, Li HL, Long HM. Preparation and properties studies of shield powder/rubber flame retardant composite material. Acta Mater. Compos. Sin., 2023, 40(9): 5085.
[11]
Hao JX, Wang HG, Song YM, Wang WH. Simultaneously improving the toughness and stiffness of wood flour/polypropylene composites using elastomer A669/talcum blends. Polym. Compos., 2019, 40(4): 1335.
CrossRef Google scholar
[12]
Degenhardt D, Greve L, Andres M, Eller TK, Copik J, Horst P. Simplified temperature-dependent elasto-viscoplastic deformation and fracture modeling of a talcum-filled PP/PE copolymer. Int. J. Plast., 2019, 119, 291.
CrossRef Google scholar
[13]
M.C. Ji, F.Y. Li, J.Y. Li, et al., Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers, Mater. Des., 198(2021), art. No. 109373.
[14]
S.W. Wang, P. Xue, M.Y. Jia, J. Tian, and R. Zhang, Effect of polymer blends on the properties of foamed wood-polymer composites, Materials, 12(2019), No. 12, art. No. 1971.
[15]
Gharsallah A, Layachi A, Louaer A, Satha H. Thermal degradation kinetics of Opuntia Ficus Indica flour and talc-filled poly (lactic acid) hybrid biocomposites by TGA analysis. J. Compos. Mater., 2021, 55(22): 3099.
CrossRef Google scholar
[16]
Wang S, Ma XY, Wang YL, et al. Preparation and desalination performance of porous planar cordierite membranes using industrial solid waste as main silica source. Ceram. Int., 2019, 45(5): 5932.
CrossRef Google scholar
[17]
B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, and H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review, Fuel, 315(2022), art. No. 123218.
[18]
M. Cosnita, M. Balas, and C. Cazan, The influence of fly ash on the mechanical properties of water immersed all waste composites, Polymers, 14(2022), No. 10, art. No. 1957.
[19]
Y.J. Xue, H. Zhao, X.T. Wei, and Y.Y. Niu, Performance analysis of compound rubber and steel slag filler modified asphalt composite, Materials, 12(2019), No. 16, art. No. 2588.
[20]
R. Alves, S. Rios, E. Fortunato, A. Viana da Fonseca, and B. Guimarães Delgado, Mechanical behaviour of steel slag-rubber mixtures: laboratory assessment, Sustainability, 15(2023), No. 2, art. No. 1563.
[21]
Guzel G, Deveci H. Physico-mechanical, thermal, and coating properties of composite materials prepared with epoxy resin/steel slag. Polym. Compos., 2017, 38(9): 1974.
CrossRef Google scholar
[22]
Zong YB, Chen WH, Fan Y, Yang TL, Liu ZB, Cang DQ. Complementation in the composition of steel slag and red mud for preparation of novel ceramics. Int. J. Miner. Metall. Mater., 2018, 25(9): 1010.
CrossRef Google scholar
[23]
Zhao LH, Wei W, Bai H, Zhang X, Cang DQ. Synthesis of steel slag ceramics: Chemical composition and crystalline phases of raw materials. Int. J. Miner. Metall. Mater., 2015, 22(3): 325.
CrossRef Google scholar
[24]
Wu QS, Huang ZC. Preparation and performance of light-weight porous ceramics using metallurgical steel slag. Ceram. Int., 2021, 47(18): 25169.
CrossRef Google scholar
[25]
Jin Q, Zhu L, Madiniyeti J, He CX, Li L. Influence of active inorganic fillers on the physical and mechanical properties of polyvinyl chloride wood-plastic composites when immersed. BioResources, 2021, 16(1): 789.
CrossRef Google scholar
[26]
Liu YN, Guo LM, Wang WH, Sun YN, Wang HG. Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite. Constr. Build. Mater., 2019, 224, 691.
CrossRef Google scholar
[27]
Lyu ST, Fan XP, Lu WW, Liu HL. Preparation and characterization of surface modification of aggregate by silane coupling agent. J. Funct. Mater., 2020, 51(4): 4199.
[28]
Aksay S. Effects of Al dopant on XRD, FT-IR and UV-vis properties of MgO films. Physica B, 2019, 570, 280.
CrossRef Google scholar
[29]
S. Li, X. Li, M.C. Shao, et al., Regulating interfacial compatibility with amino silane and bio-inspired polydopamine for highperformance epoxy composites, Tribol. Int., 140(2019), art. No. 105861.
[30]
H.L. Liu, H.Y. He, Y. Li, T.T. Hu, H.W. Ni, and H. Zhang, Coupling effect of steel slag in preparation of calcium-containing geopolymers with spent fluid catalytic cracking (FCC) catalyst, Constr. Build. Mater., 290(2021), art. No. 123194.
[31]
Géber R, Szabó R, Kocserha I. Preparation of geopolymer foams using autoclave curing. Mater. Sci. Eng., 2019, 44(2): 13.
[32]
Li L, Jin Q, He CX, Zhu L, Hu D. Properties of modified steel slag micropowder/wheat straw fiber/PVC composite. Plastics, 2020, 49(4): 99.
[33]
Kulas DG, Zolghadr A, Shonnard D. Micropyrolysis of polyethylene and polypropylene prior to bioconversion: The effect of reactor temperature and vapor residence time on product distribution. ACS Sustainable Chem. Eng., 2021, 9(43): 14443.
CrossRef Google scholar
[34]
X.L. Hao, J.J. Xu, H.Y. Zhou, et al., Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer, Mater. Des., 212(2021), art. No. 110182.
[35]
Y.H. Zhou, Y.X. Wang, and M.Z. Fan, Incorporation of tyre rubber into wood plastic composites to develop novel multifunctional composites: Interface and bonding mechanisms, Ind. Crops Prod., 141(2019), art. No. 111788.
[36]
Oualha MA, Omri N, Oualha R, et al. Development of metal hydroxide nanoparticles from eggshell waste and seawater and their application as flame retardants for ethylene-vinyl acetate copolymer (EVA). Int. J. Biol. Macromol., 2019, 128, 994.
CrossRef Google scholar
[37]
Nguyen K, Kim NK, Bhattacharyya D, Mouritz A. Assessing the combustibility of claddings: A comparative study of the modified cone calorimeter method and cylindrical furnace test. Fire Mater., 2022, 46(2): 450.
CrossRef Google scholar
[38]
Fu Y, Guo YH, Zhang KX. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis. Energy Fuels, 2016, 30(3): 2428.
CrossRef Google scholar
[39]
Jeon S, Farooq A, Lee IH, et al. Green conversion of wood plastic composites: A study on gasification with an activated bio-char catalyst. Int. J. Hydrogen Energy, 2024, 54, 96.
CrossRef Google scholar
[40]
Ramsey ED, Sun QB, Zhang ZQ, Guo W, Liu JY, Wu XH. Sustainable oil-in-water analysis using a supercritical fluid carbon dioxide extraction system directly interfaced with infrared spectroscopy. J. Environ. Sci., 2010, 22(9): 1462.
CrossRef Google scholar
[41]
Y. Zhang, B. Wu, S.H. Liu, B.W. Lei, J.L. Zhao, and Y.T. Zhao, Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects, Fuel, 278(2020), art. No. 118223.
[42]
Perrin FX, Nguyen V, Vernet JL. FT-IR spectroscopy of acid-modified titanium alkoxides: Investigations on the nature of carboxylate coordination and degree of complexation. J. Sol Gel Sci. Technol., 2003, 28(2): 205.
CrossRef Google scholar
[43]
Y.Q. Gu, Z.D. Wang, S.G. Peng, T.B. Ma, and J.B. Luo, Quantitative measurement of transfer film thickness of PTFE based composites by infrared spectroscopy, Tribol. Int., 153(2021), art. No. 106593.
[44]
Kim YM, Jeong J, Ryu S, et al. Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites. Energy Convers. Manage., 2019, 195, 727.
CrossRef Google scholar
[45]
Sun Z, Chen SY, Russell CK, et al. Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of innerlooping redox reaction and promoting mechanisms. Appl. Energy, 2018, 212, 931.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/