Novel wood-plastic composite fabricated via modified steel slag: Preparation, mechanical and flammability properties
Ling Zhao, Kai Zhao, Zhenwei Shen, Yifan Wang, Xiaojie Xia, Hao Zhang, Hongming Long
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (9) : 2110-2120.
Novel wood-plastic composite fabricated via modified steel slag: Preparation, mechanical and flammability properties
A novel method was developed to enhance the utilization rate of steel slag (SS). Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane (KH550), we obtained modified SS (MSS), which was used to prepare MSS/wood-plastic composites (MSS/WPCs) by replacing talcum powder (TP). The composites were fabricated through melting blending and hot pressing. Their mechanical and combustion properties, which comprise heat release, smoke release, and thermal stability, were systematically investigated. MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics. Notably, MSS/WPC#50 (16wt% MSS) with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance. Compared with those of WPC#0 without MSS, the tensile, flexural, and impact strengths of MSS/WPC#50 were increased by 18.5%, 12.8%, and 18.0%, respectively. Moreover, the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%, the highest vertical burning rating at the V-1 level, and the lowest horizontal burning rate at 44.2 mm/min. The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50. However, the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties, possibly due to the weak grafting caused by SS powder agglomeration. These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
modified steel slag / wood-plastic composites / preparation method / mechanical property / flame retardant
[1] |
|
[2] |
D. Jubinville, E. Esmizadeh, C. Tzoganakis, and T. Mekonnen, Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly loaded wood plastic composites, Composites B, 219(2021), art. No. 108873.
|
[3] |
|
[4] |
|
[5] |
|
[6] |
S. Huang, L. Wang, Y.C. Li, C.B. Liang, and J.L. Zhang, Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures, J. Appl. Polym. Sci., 138(2021), No. 27, art. No. 50649.
|
[7] |
B.W. Liu, H.B. Zhao, and Y.Z. Wang, Advanced flame-retardant methods for polymeric materials, Adv. Mater., 34(2022), No. 46, art. No. 2107905.
|
[8] |
|
[9] |
Z.M. Xu, L.J. Duan, Y.B. Hou, et al., The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites, Composites Part A, 131(2020), art. No. 105815.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
M.C. Ji, F.Y. Li, J.Y. Li, et al., Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers, Mater. Des., 198(2021), art. No. 109373.
|
[14] |
S.W. Wang, P. Xue, M.Y. Jia, J. Tian, and R. Zhang, Effect of polymer blends on the properties of foamed wood-polymer composites, Materials, 12(2019), No. 12, art. No. 1971.
|
[15] |
|
[16] |
|
[17] |
B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, and H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review, Fuel, 315(2022), art. No. 123218.
|
[18] |
M. Cosnita, M. Balas, and C. Cazan, The influence of fly ash on the mechanical properties of water immersed all waste composites, Polymers, 14(2022), No. 10, art. No. 1957.
|
[19] |
Y.J. Xue, H. Zhao, X.T. Wei, and Y.Y. Niu, Performance analysis of compound rubber and steel slag filler modified asphalt composite, Materials, 12(2019), No. 16, art. No. 2588.
|
[20] |
R. Alves, S. Rios, E. Fortunato, A. Viana da Fonseca, and B. Guimarães Delgado, Mechanical behaviour of steel slag-rubber mixtures: laboratory assessment, Sustainability, 15(2023), No. 2, art. No. 1563.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
S. Li, X. Li, M.C. Shao, et al., Regulating interfacial compatibility with amino silane and bio-inspired polydopamine for highperformance epoxy composites, Tribol. Int., 140(2019), art. No. 105861.
|
[30] |
H.L. Liu, H.Y. He, Y. Li, T.T. Hu, H.W. Ni, and H. Zhang, Coupling effect of steel slag in preparation of calcium-containing geopolymers with spent fluid catalytic cracking (FCC) catalyst, Constr. Build. Mater., 290(2021), art. No. 123194.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
X.L. Hao, J.J. Xu, H.Y. Zhou, et al., Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer, Mater. Des., 212(2021), art. No. 110182.
|
[35] |
Y.H. Zhou, Y.X. Wang, and M.Z. Fan, Incorporation of tyre rubber into wood plastic composites to develop novel multifunctional composites: Interface and bonding mechanisms, Ind. Crops Prod., 141(2019), art. No. 111788.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
Y. Zhang, B. Wu, S.H. Liu, B.W. Lei, J.L. Zhao, and Y.T. Zhao, Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects, Fuel, 278(2020), art. No. 118223.
|
[42] |
|
[43] |
Y.Q. Gu, Z.D. Wang, S.G. Peng, T.B. Ma, and J.B. Luo, Quantitative measurement of transfer film thickness of PTFE based composites by infrared spectroscopy, Tribol. Int., 153(2021), art. No. 106593.
|
[44] |
|
[45] |
|
/
〈 |
|
〉 |