Hydrogen-based mineral phase transformation mechanism investigation of pyrolusite ore
Ruofeng Wang , Shuai Yuan , Yanjun Li , Peng Gao , Ru Li
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (11) : 2445 -2457.
Hydrogen-based mineral phase transformation mechanism investigation of pyrolusite ore
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production. An innovative hydrogen-based mineral phase transformation technology to pyrolusite was proposed, where a 96.44% distribution rate of divalent manganese (Mn2+) was observed at an optimal roasting temperature of 650°C, a roasting time of 25 min, and an H2 concentration of 20vol%; under these conditions. The manganese predominantly existed in the form of manganosite. This study investigated the generation mechanism of manganosite based on the reduction kinetics, phase transformation, and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate, and the optimal kinetic model for the reaction was the random nucleation and growth model (reaction order, n = 3/2) with an activation energy (Ea) of 24.119 kJ·mol−1. Throughout the mineral phase transformation, manganese oxide from the outer layer of particles moves inward to the core. In addition, pyrolusite follows the reduction sequence of MnO2 → Mn2O3 → Mn3O4 → MnO, and the reduction of manganese oxides in each valence state simultaneously proceeds. These findings provide significant insight into the efficient and clean utilization of pyrolusite.
| [1] |
|
| [2] |
|
| [3] |
T. Keller and I. Baker, Manganese-based permanent magnet materials, Prog. Mater. Sci., 124(2022), art. No. 100872. |
| [4] |
D.Y. Chung, P.J. Heaney, J.E. Post, J.E. Stubbs, and P.J. Eng, Synchrotron X-ray diffraction of pyrolusite (MnO2) and rutile (TiO2) during heating to ~1000°C, J. Phys. Chem. Solids, 177(2023), art. No. 111284. |
| [5] |
|
| [6] |
|
| [7] |
K.Q. Li, J. Chen, J.H. Peng, M. Omran, and G. Chen, Efficient improvement for dissociation behavior and thermal decomposition of manganese ore by microwave calcination, J. Cleaner Prod., 260(2020), art. No. 121074. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
S. Keshavarz, F. Faraji, F. Rashchi, and M. Mokmeli, Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus Niger: Process optimization and kinetic studies, J. Environ. Manage., 285(2021), art. No. 112153. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
J. Chen, F. He, L. Gao, S.H. Guo, M. Omran, and G. Chen, Rapid preparation of manganese monoxide by microwave-enhanced selective carbothermal reduction, Front. Energy Res., 10(2022), art. No. 845303. |
| [18] |
J.R. Ju, R.Y. Ma, Y.H. Li, et al., An efficient and clean method for the selective extraction and recovery of manganese from pyrolusite using ammonium sulfate roasting-water leaching and carbonate precipitation, Miner. Eng., 203(2023), art. No. 108356. |
| [19] |
|
| [20] |
|
| [21] |
K.Q. Li, G. Chen, X.T. Li, et al., High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field, Bioresour. Technol., 294(2019), art. No. 122217. |
| [22] |
H. Wu, Y.L. Feng, H.R. Li, H.J. Wang, and J.R. Ju, Co-recovery of manganese from pyrolusite and gold from carbonaceous gold ore using fluidized roasting coupling technology, Chem. Eng. Process., 147(2020), art. No. 107742. |
| [23] |
|
| [24] |
|
| [25] |
J.G. Li and B.L. Yang, Multi-scale CFD simulations of bubbling fluidized bed methanation process, Chem. Eng. J., 377(2019), art. No. 119818. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
J.R. Lan, Y. Sun, Y.G. Du, D.Y. Du, T.C. Zhang, and J. Li, Environmentally-friendly bioleaching of manganese from pyrolusite: Performance and mechanisms, J. Cleaner Prod., 249(2020), art. No. 119354. |
| [35] |
K.J. Laidler, The development of the Arrhenius equation, J. Chem. Educ., 61(1984), No. 6, art. No. 494. |
| [36] |
X. Liu, P. Gao, S. Yuan, Y. Lv, and Y.X. Han, Clean utilization of high-iron red mud by suspension magnetization roasting, Miner. Eng., 157(2020), art. No. 106553. |
| [37] |
S. Yuan, X. Wang, H. Zhang, Y.J. Li, and X. Liu, Experimental and mechanism research of the effects of alkali on the reduction reaction of hematite during roasting reduction reaction, Adv. Powder Technol., 33(2022), No. 6, art. No. 103592. |
| [38] |
|
| [39] |
X.J. Xie, C. Lu, R. Xu, X.Q. Yang, L. Yan, and C.L. Su, Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism, Sci. Total Environ., 806(2022), art. No. 150615. |
| [40] |
|
| [41] |
|
| [42] |
A. Derri, M. Guezzoul, A. Mokadem, et al., Insight into the photoluminescence and morphological characteristics of transition metals (TM = Mn, Ni, Co, Cu)-doped ZnO semiconductor: A comparative study, Opt. Mater., 145(2023), art. No. 114467. |
| [43] |
N. Abinaya, M.C. Robert, N. Srinivasan, and S. Saravanakumar, Electron density mapping and bonding in Mn doped CoFe2O4 using XRD, and its correlation with room temperature optical and magnetic properties, J. Magn. Magn. Mater., 580(2023), art. No. 170938. |
| [44] |
C.S. Shao, C.Y. Ding, S.S. Wu, et al., Ultrahigh concentration surface oxygen vacancies in ferrite foams for broadened electromagnetic absorption bandwidth, Mater. Res. Bull., 167(2023), art. No. 112411. |
| [45] |
J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, and W.B. Li, Mechanism and kinetics of the reduction of hematite to magnetite with CO–CO2 in a micro-fluidized bed, Minerals, 7(2017), No. 11, art. No. 209. |
| [46] |
S. Yuan, Q. Zhang, H. Yin, and Y.J. Li, Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution, J. Hazard. Mater., 404(2021), art. No. 124067. |
| [47] |
|
| [48] |
|
| [49] |
K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172. |
/
| 〈 |
|
〉 |