Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism
Yang Xue , Xiaoming Liu , Na Zhang , Yang Shao , Chunbao Charles Xu
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2364 -2374.
Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism
Photocatalytic processes are efficient methods to solve water contamination problems, especially considering dyeing wastewater disposal. However, high-efficiency photocatalysts are usually very expensive and have the risk of heavy metal pollution. Recently, an iron oxides@hydrothermal carbonation carbon (HTCC) heterogeneous catalyst was prepared by our group through co-hydrothermal treatment of carbohydrates and zinc extraction tailings of converter dust. Herein, the catalytic performance of the iron oxides@HTCC was verified by a nonbiodegradable dye, methylene blue (MB), and the catalytic mechanism was deduced from theoretical simulations and spectroscopic measurements. The iron oxides@HTCC showed an excellent synergy between photocatalysis and Fenton-like reactions. Under visible-light illumination, the iron oxides@HTCC could be excited to generate electrons and holes, reacting with H2O2 to produce ·OH radicals to oxidize and decompose organic pollutants. The removal efficiency of methylene blue over iron oxides@HTCC at 140 min was 2.86 times that of HTCC. The enhanced catalytic performance was attributed to the advantages of iron oxides modification: (1) promoting the excitation induced by photons; (2) improving the charge transfer. Furthermore, the iron oxides@HTCC showed high catalytic activity in a wide pH value range of 2.3–10.4, and the MB removal efficiency remained higher than 95% after the iron oxides@HTCC was recycled 4 times. The magnetically recyclable iron oxides@HTCC may provide a solution for the treatment of wastewater from the textile industry.
photocatalysis / photo-Fenton reaction / methylene blue degradation / tailings utilization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
P. Bhavani, M. Hussain, and Y.K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: A state of the art review, J. Clean. Prod., 330(2022), art. No. 129899. |
| [11] |
|
| [12] |
G.L. Wang, W.X. Bi, Q.M. Zhang, X.L. Dong, and X.F. Zhang, Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism, J. Hazard. Mater., 426(2022), art. No. 127821. |
| [13] |
Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. |
| [14] |
O. Kazak and A. Tor, In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution, J. Hazard. Mater., 393(2020), art. No. 122391. |
| [15] |
|
| [16] |
C. Lai, X.X. Shi, L. Li, et al., Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review, Sci. Total Environ., 775(2021), art. No. 145850. |
| [17] |
|
| [18] |
U. Mahanta, M. Khandelwal, and A.S. Deshpande, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Appl. Surf. Sci., 576(2022), art. No. 151745. |
| [19] |
H.X. Yan, Y.S. Pan, X.B. Liao, et al., Enhancement of Fe2+/Fe3+ cycles by the synergistic effect between photocatalytic and co-catalytic of ZnxCd1−xS on photo-Fenton system, Appl. Surf. Sci., 576(2022), art. No. 151881. |
| [20] |
|
| [21] |
M.M. Ding, W. Chen, H. Xu, et al., Novel α-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid, J. Hazard. Mater., 382(2020), art. No. 121064. |
| [22] |
|
| [23] |
T. Li, X.M. Wang, Y.M. Chen, J.R. Liang, and L.X. Zhou, Producing ·OH, ${\rm{SO}}_4^{ \cdot -}$ and ${\rm{O}}_2^ -$ in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite, Chem. Eng. J., 393(2020), art. No. 124735. |
| [24] |
Y.J. Choe, J.S. Kim, H. Kim, and J. Kim, Open Ni site coupled with ${\rm{SO}}_4^{2 -}$ functionality to prompt the radical interconversion of ${\rm{OH}} \leftrightarrow {\rm{SO}}_4^{ \cdot -}$ exploited to decompose refractory pollutants, Chem. Eng. J., 400(2020), art. No. 125971. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
R.D. Su, S.H. Ge, H. Li, et al., Synchronous synthesis of Cu2O/Cu/rGO@carbon nanomaterials photocatalysts via the sodium alginate hydrogel template method for visible light photocatalytic degradation, Sci. Total Environ., 693(2019), art. No. 133657. |
| [32] |
|
| [33] |
|
| [34] |
S.Y. Luo, S.P. Li, S. Zhang, Z.Y. Cheng, T.T. Nguyen, and M.H. Guo, Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction, Sci. Total Environ., 806(2022), art. No. 150662. |
| [35] |
|
| [36] |
X.H. Zhang, B.Y. Lin, X.Y. Li, X. Wang, K.Z. Huang, and Z.H. Chen, MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal, Chem. Eng. J., 430(2022), art. No. 132728. |
| [37] |
|
| [38] |
Q.H. Zhu, K. Zhang, D.Q. Li, et al., Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review, Chem. Eng. J., 426(2021), art. No. 131681. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Y.W. Pan, R. Qin, M.H. Hou, et al., The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions, Sep. Purif. Technol., 300(2022), art. No. 121831. |
| [45] |
Y. Xue and X.M. Liu, Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review, Chem. Eng. J., 420(2021), art. No. 130349. |
| [46] |
|
/
| 〈 |
|
〉 |