Formation and control of the surface defect in hypo-peritectic steel during continuous casting: A review
Quanhui Li , Peng Lan , Haijie Wang , Hongzhou Ai , Deli Chen , Haida Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2281 -2296.
Formation and control of the surface defect in hypo-peritectic steel during continuous casting: A review
Hypo-peritectic steels are widely used in various industrial fields because of their high strength, high toughness, high processability, high weldability, and low material cost. However, surface defects are liable to occur during continuous casting, which includes depression, longitudinal cracks, deep oscillation marks, and severe level fluctuation with slag entrapment. The high-efficiency production of hypo-peritectic steels by continuous casting is still a great challenge due to the limited understanding of the mechanism of peritectic solidification. This work reviews the definition and classification of hypo-peritectic steels and introduces the formation tendency of common surface defects related to peritectic solidification. New achievements in the mechanism of peritectic reaction and transformation have been listed. Finally, countermeasures to avoiding surface defects of hypo-peritectic steels duiring continuous casting are summarized. Enlightening certain points in the continuous casting of hypo-peritectic steels and the development of new techniques to overcome the present problems will be a great aid to researchers.
hypo-peritectic steel / continuous casting / surface defect / massive transformation / grain coarsening / depression / longitudinal crack / level fluctuation / oscillation mark
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
FactSage version 8.3—Database FSstel, Thermfact and GTT-Technologies, 2023 [2023-11-6]. https://www.factsage.com |
| [8] |
ThermoCalc Version 2023b—Database TCFE 13, Thermo-Calc Software, 2023 [2023-11-6]. https://www.thermocalc.com |
| [9] |
JmatPro Version 14.0—Database General Steel, Jmatpro S oftware, 2023 [2023-11-96]. https://www.sentesoftware.co.uk/ |
| [10] |
|
| [11] |
A.S. Normanton, V. Ludlow, A.W. Smith, et al., Improving surface quality of continuously cast semis by an understanding of shell development and growth, [in] Final Report, Technical Steel Research Series, Luxembourg, 2005, p. 349. |
| [12] |
M.M. Wolf, Addendum I—Characteristic data on the peritectic reaction of carbon low alloy and stainless steels, [in] M.M. Wolf, ed., Continuous Casting, Vol. 9, Zürich, Switzerland, 1997, p. 59. |
| [13] |
|
| [14] |
|
| [15] |
M. Wolf, Estimation of crack susceptibility for new steel grades, [in] Proceedings of 1st European Conference on Continuous Casting, Florence, Italy, 1991, p. 2489. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
P. Presoly, C. Bernhard, N. Fuchs, J. Miettinen, S. Louhenkilpi, and J. Laine, Further development and validation of IDS by means of selected experiments, [in] Proceedings of 9th ECCC European Continuous Casting Conference-ECCC, Vienna, 2017. |
| [26] |
|
| [27] |
S.C. Moon, D. Phelan, and R. Dippenaar, New insights of the peritectic phase transition in steel through in situ measurement of thermal response in a high-temperature confocal microscope, Mater. Charact., 172(2021), art. No. 110841. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
J.L. Guo, G.H. Wen, D.Z. Pu, and P. Tang, A novel approach for evaluating the contraction of hypo-peritectic steels during initial solidification by surface roughness, Materials, 11(2018), No. 4, art. No. 571. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
T.P. Qu, D.Y. Wang, H.H. Wang, D. Hou, and J. Tian, Effect of magnesium treatment on the hot ductility of Ti-bearing peritectic steel, Metals, 10(2020), No. 10, art. No. 1282. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
D. Balogun, M. Roman, R.E. Gerald, J. Huang, L. Bartlett, and R. O’Malley, Shell measurements and mold thermal mapping approach to characterize steel shell formation in peritectic grade steels, Steel Res. Int., 93(2022), No. 1, p. art(2100455). |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
G. Xia, J. Zirngast, H. Hiebler, and M. Wolf, High temperature mechanical properties of in situ solidified steel measured by the new SSCT test, [in] Conference on Continuous Casting of Steel in Developing Countries, 1993, p. 200. |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
R. Krobath and C. Bernhard, Experimental quantification of critical parameters for prediction of surface crack formation in continuous casting, Steel Res. Int., 91(2020), No. 12, art. No. 2000234. |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
H. Yasuda, T. Suga, K. Ichida, T. Narumi, and K. Morishita, In situ observation of austenite coarsening induced by massive-like transformation during solidification in Fe–C alloys, IOP Conf. Ser.: Mater. Sci. Eng., 861(2020), No. 1, art. No. 012051. |
| [70] |
|
| [71] |
D. Lee, Y.U. Heo, J.S. Lee, et al., AlN-assisted internal oxidation behavior in Al-containing high Mn steels, Mater. Charact., 189(2022), art. No. 111967. |
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
A. Gantner, C.M. Chimani, and J. Watzinger, Medium slab casting of peritectic steels at Nova Hut as at high casting speeds-BHM, BHM Berg Huttenmann. Monatsh., 144(1999), No. 7, art. No. S276. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
S. Moon, R. Dippenaar, and S.Y. Kim, The peritectic phase transition of steel during the initial stages of solidification in the mold, [in] AISTech Conference, Cleveland, 2015. |
| [107] |
|
| [108] |
H. Yasuda, K. Morishita, N. Nakatsuka, et al., Dendrite fragmentation induced by massive-like δ–γ transformation in Fe–C alloys, Nat. Commun., 10(2019), No. 1, art. No. 3183. |
| [109] |
H. Yasuda, T. Hashimoto, N. Sei, K. Morishita, and M. Yoshiya, Investigation using 4D-CT of massive-like transformation from the δ to γ phase during and after δ-solidifica-tion in carbon steels, IOP Conf. Ser.: Mater. Sci. Eng., 529(2019), No. 1, art. No. 012013. |
| [110] |
H. Yasuda, T. Nagira, M. Yoshiya, et al., Massive transformation fromδphase toγphase in Fe–C alloys and strain induced in solidifying shell, IOP Conf. Ser.: Mater. Sci. Eng., 33(2012), art. No. 012036. |
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
M. Wolf. Strand surface quality and the peritectic reaction—A look into the basics, [in] Steelmaking Conference Proceedings, Toronto, 81(1998), p.53. |
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
/
| 〈 |
|
〉 |