Recent research progress on the phase-field model of microstructural evolution during metal solidification

Kaiyang Wang , Shaojie Lv , Honghui Wu , Guilin Wu , Shuize Wang , Junheng Gao , Jiaming Zhu , Xusheng Yang , Xinping Mao

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2095 -2111.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2095 -2111. DOI: 10.1007/s12613-023-2710-x
Invited Review

Recent research progress on the phase-field model of microstructural evolution during metal solidification

Author information +
History +
PDF

Abstract

Solidification structure is a key aspect for understanding the mechanical performance of metal alloys, wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys. By following the principle of free energy minimization, the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures. The recent progress in the application of phase-field simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review. The effects of several typical elements and process parameters, including carbon, boron, silicon, cooling rate, pulling speed, scanning speed, anisotropy, and gravity, on the solidification structure are discussed. The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.

Keywords

solidification process / phase-field models / microstructure evolution / alloy composition / casting process parameters

Cite this article

Download citation ▾
Kaiyang Wang, Shaojie Lv, Honghui Wu, Guilin Wu, Shuize Wang, Junheng Gao, Jiaming Zhu, Xusheng Yang, Xinping Mao. Recent research progress on the phase-field model of microstructural evolution during metal solidification. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(11): 2095-2111 DOI:10.1007/s12613-023-2710-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang LY, Jiang YH, Ma Z, et al. Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy. J. Mater. Process. Technol., 2008, 207(1–3): 107.

[2]

P. Köhnen, S. Ewald, J.H. Schleifenbaum, A. Belyakov, and C. Haase, Controlling microstructure and mechanical properties of additively manufactured high-strength steels by tailored solidification, 35(2020), art. No. 101389.

[3]

Zheng HT, Chen RR, Qin G, et al. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. J. Mater. Sci. Technol., 2020, 38, 19.

[4]

Roy S, Suwas S, Tamirisakandala S, Miracle DB, Srinivasan R. Development of solidification microstructure in boron-modified alloy Ti–6Al–4V–0.1B. Acta Mater., 2011, 59(14): 5494.

[5]

Ali Jaafar M, Rousse DR, Gibout S, Bédécarrats JP. A review of dendritic growth during solidification: Mathematical modeling and numerical simulations. Renewable Sustainable Energy Rev., 2017, 74, 1064.

[6]

Wang FY, Dong LS, Wu HH, et al. Enhanced nanocrystalline stability of BCC iron via copper segregation. Prog. Nat. Sci., 2023, 33(2): 185.

[7]

Assadi H. A phase-field model for non-equilibrium solidification of intermetallics. Acta Mater., 2007, 55(15): 5225.

[8]

Mecozzi MG, Sietsma J, van der Zwaag S, Apel M, Schaffnit P, Steinbach I. Analysis of the γα transformation in a C-Mn steel by phase-field modeling. Metall. Mater. Trans. A, 2005, 36(9): 2327.

[9]

Thiessen RG, Richardson IM. A strategy for modeling microstructure in macroscopic simulations of welded material. Metall. Mater. Trans. B, 2006, 37(2): 293.

[10]

Thiessen RG, Richardson IM. A physically based model for microstructure development in a macroscopic heat-affected zone: Grain growth and recrystallization. Metall. Mater. Trans. B, 2006, 37(4): 655.

[11]

Mecozzi MG, Sietsma J, van der Zwaag S. Analysis of γα transformation in a Nb micro-alloyed C-Mn steel by phase field modelling. Acta Mater., 2006, 54(5): 1431.

[12]

Rao WF, Khachaturyan AG. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics. Acta Mater., 2011, 59(11): 4494.

[13]

Wang YZ, Khachaturyan AG. Multi-scale phase field approach to martensitic transformations. Mater. Sci. Eng. A, 2006, 438–440, 55.

[14]

Lai KW, Shi SJ, Yan ZW, et al. Phase-field simulation of re-dissolution of γ’ phase in Ni-Al alloy by continuous and second-order aging treatment. Rare Met., 2021, 40(5): 1155.

[15]

C. Yang, S.L. Li, X.T. Wang, J.S. Wang, and H.B. Huang, Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification, Comput. Mater. Sci., 171(2020), art. No. 109220.

[16]

Dargahi Noubary K, Kellner M, Steinmetz P, Hötzer J, Nestler B. Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics. Comput. Mater. Sci., 2017, 138, 403.

[17]

I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng., 17(2009), No. 7, art. No. 073001.

[18]

J. Eiken, B. Böttger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73(2006), No. 6, art. No. 066122.

[19]

S.J. Lv, H.H. Wu, K.Y. Wang, et al., The microstructure evolution and influence factors of acicular ferrite in low alloy steels, Comput. Mater. Sci., 218(2023), art. No. 111989.

[20]

Lv SJ, Wu HH, Wang KY, et al. The austenite to polygonal ferrite transformation in low-alloy steel: Multi-phase-field simulation. J. Mater. Res. Technol., 2023, 24, 9630.

[21]

Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems. Physica D, 1996, 94(3): 135.

[22]

Fukumoto S, Nomoto S. Microstructure simulation for solidification of stainless steel by multi-phase-field model. J. Jpn. Inst. Met. Mater., 2009, 73(7): 502.

[23]

Lv SJ, Wang SZ, Wu GL, et al. Application of phase-field modeling in solid-state phase transformation of steels. J. Iron Steel Res. Int., 2022, 29(6): 867.

[24]

Kim SG, Kim WT, Lee JS, Ode M, Suzuki T. Large scale simulation of dendritic growth in pure undercooled melt by phase-field model. ISIJ Int., 1999, 39(4): 335.

[25]

Boettinger WJ, Warren JA, Beckermann C, Karma A. Phase-field simulation of solidification. Annu. Rev. Mater. Res., 2002, 32, 163.

[26]

Geng YX, Tang H, Xu JH, et al. Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting. Int. J. Miner. Metall. Mater., 2022, 29(9): 1770.

[27]

Wang WL, Lu C, Zhou LJ, Lyu PS. Research methods and influencing factors of interfacial heat transfer during subrapid solidification process of strip casting. J. Iron Steel Res. Int., 2022, 29(1): 3.

[28]

Bai CF, Wang B, Ma J, Zhang JY, Pan WP. Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting. J. Iron Steel Res. Int., 2023, 30(1): 64.

[29]

Safary E, Taghiabadi R, Ghoncheh MH. Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates. Int. J. Miner. Metall. Mater., 2022, 29(6): 1249.

[30]

An JZ, Cai ZZ, Zhu MY. Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel. Int. J. Miner. Metall. Mater., 2022, 29(12): 2172.

[31]

Chabak YG, Shimizu K, Efremenko VG, et al. Microstructure and phase elemental distribution in high-boron multi-component cast irons. Int. J. Miner. Metall. Mater., 2022, 29(1): 78.

[32]

He T, Hu R, Yang JR, Fu HZ. Phase selection and solidification path transition of Ti–48Al–xNb alloys with different cooling rates. Rare Met., 2023, 42(1): 288.

[33]

Zhang HY, Zhang ZY, Xu YF, et al. Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates. Rare Met., 2022, 41(1): 246.

[34]

Jin ZS, Cao FY, Cao GY, et al. Effect of casting temperature on the solidification process and (micro)structure of Zr-based metallic glasses. J. Mater. Res. Technol., 2023, 22, 3010.

[35]

Lu B, Li Y, Wang HY, et al. Effects of cooling rates on the solidification behavior, microstructural evolution and mechanical properties of Al-Zn-MgCu alloys. J. Mater. Res. Technol., 2023, 22, 2532.

[36]

Shi KH, Zhou KC, Li ZY, Zan XQ, Dong KL, Jiang Q. Microstructure and properties of ultrafine WC–Co–VC cemented carbides with different Co contents. Rare Met., 2022, 41(6): 1955.

[37]

Fan HJ, Liu Y, Ye JW, Qiu WB, Qiu YC. Microstructure and mechanical properties of WC–(Ti, M)(C, N)–Co cemented carbides with different nitrogen contents. Rare Met., 2022, 41(10): 3530.

[38]

Qi MF, Wei LY, Xu YZ, et al. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(9): 1746.

[39]

Koltygin AV, Bazhenov VE, Plisetskaya IV, et al. Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys. Int. J. Miner. Metall. Mater., 2022, 29(9): 1733.

[40]

Ma SH, Hao HQ, Wang D, Lou LH, Zhang J. Effects of Ta on the solidification behavior and microstructure of a rhenium-containing hot corrosion resistant single crystal. Int. J. Miner. Metall. Mater., 2019, 26(7): 901.

[41]

Huang HL, Jia ZH, Xing Y, Wang XL, Liu Q. Micro-structure of Al-Si-Mg alloy with Zr/Hf additions during solidification and solution treatment. Rare Met., 2019, 38(11): 1033.

[42]

Zhao XY, Chen RR, Yang Y, et al. Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents. Rare Met., 2023, 42(6): 2047.

[43]

Zhang RZ, He JS, Xu SG, Zhang FC, Wang XT. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7Mo super austenitic stainless steel. J. Mater. Res. Technol., 2023, 22, 1238.

[44]

Elmer JW, Allen SM, Eagar TW. Microstructural development during solidification of stainless steel alloys. Metall. Trans. A, 1989, 20(10): 2117.

[45]

M.M. Chen, R.H. Shi, Z.Z. Liu, et al., Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., (2023). DOI: https://doi.org/10.1007/s12613-023-2664-z

[46]

Wang WL, Wang LK, Lyu PS. Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by subrapid solidification. Int. J. Miner. Metall. Mater., 2023, 30(2): 354.

[47]

Wei C, Wang J, Dong BW, et al. Properties and microstructural evolution of a ternary Cu-Co-Fe immiscible alloy solidified under high magnetic fields. J. Mater. Res. Technol., 2023, 24, 3564.

[48]

Zhang YJ, Zhou JX, Yin YJ, Ji XY, Shen X, Guo Z. Study on the solutal convection during dendrite growth of superalloy under directional solidification condition. J. Mater. Res. Technol., 2023, 23, 3916.

[49]

C.L. Shang, H.H. Wu, G.F. Pan, et al., The characteristic microstructures and properties of steel-based alloy via additive manufacturing, Materials, 16(2023), No. 7, art. No. 2696.

[50]

Paju M, Möller R. The effect of boron on phosphorus segregation in austenite. Scripta Metall., 1984, 18(8): 813.

[51]

Chen W, Chaturvedi MC, Richards NL. Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718. Metall. Mater. Trans. A, 2001, 32(4): 931.

[52]

Jung JG, Kim J, Noh KM, Park KK, Lee YK. Effects of B on microstructure and hardenability of resistance seam welded HSLA linepipe steel. Sci. Technol. Weld. Join., 2012, 17(1): 77.

[53]

Yan BC, Zhang J, Lou LH. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy. Mater. Sci. Eng. A, 2008, 474(1–2): 39.

[54]

Hu Q, Liu L, Zhao XB, Gao SF, Zhang J, Fu HZ. Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium. Trans. Nonferrous Met. Soc. China, 2013, 23(11): 3257.

[55]

Whitesell HS, Overfelt RA. Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247. Mater. Sci. Eng. A, 2001, 318(1–2): 264.

[56]

Lee HW, Kim YH, Lee SH, Lee KH, Park JU, Sung JH. Effect of boron contents on weldability in high strength steel. J. Mech. Sci. Technol., 2007, 21(5): 771.

[57]

Amirthalingam M, van der Aa EM, Kwakernaak C, Hermans MJM, Richardson IM. Elemental segregation during resistance spot welding of boron containing advanced high strength steels. Weld. World, 2015, 59(5): 743.

[58]

Furtado HS, Bernardes AT, Machado RF, Silva CA. Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys. Mat. Res., 2009, 12(3): 345.

[59]

Shibata H, Arai Y, Suzuki M, Emi T. Kinetics of peritectic reaction and transformation in Fe-C alloys. Metall. Mater. Trans. B, 2000, 31(5): 981.

[60]

Chuang YK, Reinisch D, Schwerdtfeger K. Kinetics of the diffusion controlled peritectic reaction during solidification of iron–carbon-alloys. Metall. Trans. A, 1975, 6(1): 235.

[61]

Shen YZ, Liu JH, Xu H. Study of peritectic phase transition in high-Mn steel using phase-field method. Metall. Mater. Trans. B, 2022, 53(1): 121.

[62]

Mendiratta MG, Parthasarathy TA, Dimiduk DM. Oxidation behavior of αMo-Mo3Si-Mo5SiB2 (T2) three phase system. Intermetallics, 2002, 10(3): 225.

[63]

G. Hasemann, S. Ida, L. Zhu, T. Iizawa, K. Yoshimi, and M. Krüger, Experimental assessment of the microstructure evolution and liquidus projection in the Mo-rich Mo–Si–B system, Mater. Des., 185(2020), art. No. 108233.

[64]

Gaisin RA, Imayev VM, Shaimardanov RA, Imayev RM. Structure and properties of Mo–9Si–8B alloy fabricated by casting. Inorg. Mater. Appl. Res., 2017, 8(5): 750.

[65]

Lemberg JA, Ritchie RO. Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv. Mater., 2012, 24(26): 3445.

[66]

Nestler B, Wheeler AA. Phase-field modeling of multiphase solidification. Comput. Phys. Commun., 2002, 147(1–2): 230.

[67]

Kundin J, Pogorelov E, Emmerich H. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al-Cu-Ni alloys. Acta Mater., 2015, 83, 448.

[68]

O. Kazemi, G. Hasemann, M. Krüger, and T. Halle, Microstructure evolution and sequence of phase transition reactions through the solidification of Mo-Si-B alloy; a phase-field study, Comput. Mater. Sci., 193(2021), art. No. 110422.

[69]

Montiel D, Liu L, Xiao L, Zhou Y, Provatas N. Microstructure analysis of AZ31 magnesium alloy welds using phase-field models. Acta Mater., 2012, 60(16): 5925.

[70]

Gurevich S, Amoorezaei M, Montiel D, Provatas N. Evolution of microstructural length scales during solidification of magnesium alloys. Acta Mater., 2012, 60(8): 3287.

[71]

Y.B. Wang, M.G. Wei, X.T. Liu, et al., Phase-field study of the effects of the multi-controlling parameters on columnar dendrite during directional solidification in hexagonal materials, Eur. Phys. J. E, 43(2020), No. 7, art. No. 41.

[72]

Scipioni Bertoli U, MacDonald BE, Schoenung JM. Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater. Sci. Eng. A, 2019, 739, 109.

[73]

Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol., 2013, 213(4): 606.

[74]

Liu LF, Ding QQ, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater. Today, 2018, 21(4): 354.

[75]

Pinomaa T, Lindroos M, Walbrühl M, Provatas N, Laukkanen A. The significance of spatial length scales and solute segregation in strengthening rapid solidification microstructures of 316L stainless steel. Acta Mater., 2020, 184, 1.

[76]

Gong XB, Chou K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM, 2015, 67(5): 1176.

[77]

S. Chu, C.W. Guo, T.X. Zhang, et al., Phase-field simulation of microstructure evolution in electron beam additive manufacturing, Eur. Phys. J. E, 43(2020), No. 6, art. No. 35.

[78]

Wu LM, Zhang J. Phase field simulation of dendritic solidification of Ti–6Al–4V during additive manufacturing process. JOM, 2018, 70(10): 2392.

[79]

Zhang J, Wu LM, Zhang Y, Meng LB. Phase field simulation of dendritic microstructure in additively manufactured titanium alloy. Met. Powder Rep., 2019, 74(1): 20.

[80]

Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Addit. Manuf., 2016, 9, 14.

[81]

F.Y. Yu, The influence of anisotropy on the evolution of interfacial morphologies in directional solidification: A phase-field study, arXiv e-prints, 2022. https://api.semanticscholar.org/CorpusID:253223918

[82]

Tiller WA, Jackson KA, Rutter JW, Chalmers B. The redistribution of solute atoms during the solidification of metals. Acta Metall., 1953, 1(4): 428.

[83]

Mullins WW, Sekerka RF. Pelcé P. Stability of a planar interface during solidification of a dilute binary alloy. Dynamics of Curved Fronts, 1988, Amsterdam, Elsevier, 345.

[84]

Warren JA, Langer JS. Prediction of dendritic spacings in a directional-solidification experiment. Phys. Rev. E, 1993, 47(4): 2702.

[85]

Plapp M. Phase-field modelling of solidification microstructures. J. Indian Inst. Sci., 2016, 96(3): 179.

[86]

Karma A, Rappel WJ. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E, 1996, 53(4): R3017.

[87]

Karma A, Rappel WJ. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E, 1998, 57(4): 4323.

[88]

Z.J. Wang, J.C. Wang, and G.C. Yang, Onset of initial planar instability with surface-tension anisotropy during directional solidification, Phys. Rev. E, 80(2009), No. 5, art. No. 052603.

[89]

Z.B. Dong, W.J. Zheng, Y.H. Wei, and K.J. Song, Dynamic evolution of initial instability during non-steady-state growth, Phys. Rev. E, 89(2014), No. 6, art. No. 062403.

[90]

Yu FY, Ji YZ, Wei YH, Chen LQ. Effect of the misorientation angle and anisotropy strength on the initial planar instability dynamics during solidification in a molten pool. Int. J. Heat Mass Transf., 2019, 130, 204.

[91]

Jana S, Jakumeit J, Tiefers R, Stoyanov T. Simulation of cold shuts and misruns in centrifugal casting of TiAl low pressure turbine blades. Mater. Sci. Forum, 2013, 765, 155.

[92]

M. Cisternas Fernández, M. Založnik, H. Combeau, and U. Hecht, Thermosolutal convection and macrosegregation during directional solidification of TiAl alloys in centrifugal casting, Int. J. Heat Mass Transf., 154(2020), art. No. 119698.

[93]

A. Viardin, J. Zollinger, L. Sturz, et al., Columnar dendritic solidification of TiAl under diffusive and hypergravity conditions investigated by phase-field simulations, Comput. Mater. Sci., 172(2020), art. No. 109358.

[94]

Diepers HJ, Steinbach I. Interaction of interdendritic convection and dendritic primary spacing: Phase-field simulation and analytical modeling. Mater. Sci. Forum, 2006, 508, 145.

[95]

Steinbach I. Pattern formation in constrained dendritic growth with solutal buoyancy. Acta Mater., 2009, 57(9): 2640.

[96]

M. Apel, H.J. Diepers, and I. Steinbach, On the effect of interdendritic flow on primary dendrite spacing: A phase field study and analytical scaling relations, [in] C.A. Gandin, ed., Modeling of Casting, Welding and Advanced Solidification Processes XI, Opio, Vol. 1, 2006, p. 505.

[97]

Battalle CC, Grugel RN, Hmelo AB, Wang TG. The effect of enhanced gravity levels on microstructural development in Pb-50 wt pct Sn alloys during controlled directional solidification. Metall. Mater. Trans. A, 1994, 25(4): 865.

[98]

Viardin A, Souhar Y, Cisternas Fernández M, Apel M, Založnik M. Mesoscopic modeling of equiaxed and columnar solidification microstructures under forced flow and buoyancy-driven flow in hypergravity: Envelope versus phase-field model. Acta Mater., 2020, 199, 680.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/