Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review

Qicheng Feng, Wenhang Yang, Maohan Chang, Shuming Wen, Dianwen Liu, Guang Han

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (1) : 1-17. DOI: 10.1007/s12613-023-2709-3
Invited Review

Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review

Author information +
History +

Abstract

The flotation separation of Cu-Fe sulfide minerals at low alkalinity can be achieved using selective depressants. In the flotation system of Cu-Fe sulfide minerals, depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector. This review summarizes the advances in depressants for the flotation separation of Cu-Fe sulfide minerals at low alkalinity. These advances include use of inorganic depressants (oxidants and sulfur-oxygen compounds), natural polysaccharides (starch, dextrin, konjac glucomannan, and galactomannan), modified polymers (carboxymethyl cellulose, polyacrylamide, lignosulfonate, and tricarboxylate sodium starch), organic acids (polyglutamic acid, sodium humate, tannic acid, pyrogallic acid, salicylic acid, and lactic acid), sodium dimethyl dithiocarbamate, and diethylenetriamine. The potential application of specific inorganic and organic depressants in the flotation separation of Cu-Fe sulfide minerals at low alkalinity is reviewed. The advances in the use of organic depressants with respect to the flotation separation of Cu-Fe sulfide minerals are comprehensively detailed. Additionally, the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized. Finally, several perspectives on depressants vis-à-vis flotation separation of Cu-Fe sulfide minerals at low alkalinity are proposed.

Keywords

Cu-Fe sulfide minerals / flotation separation / selective depressants / depression mechanism

Cite this article

Download citation ▾
Qicheng Feng, Wenhang Yang, Maohan Chang, Shuming Wen, Dianwen Liu, Guang Han. Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(1): 1‒17 https://doi.org/10.1007/s12613-023-2709-3

References

[[1]]
Alami AH, Rajab B, Abed J, Faraj M, Abu Hawili A, Alawadhi H. Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications. Energy, 2019, 174: 526,
CrossRef Google scholar
[[2]]
Ji RJ, Liu YH, To S, et al.. Efficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatment. J. Alloys Compd., 2018, 764: 51,
CrossRef Google scholar
[[3]]
K.I. Kim, H. Lee, J. Kim, K.H. Oh, and K.T. Kim, Wear behavior of commercial copper-based aircraft brake pads fabricated under different SPS conditions, Crystals, 11(2021), No. 11, art. No. 1298.
[[4]]
J.H. Chen, J.M. Wang, Y.Q. Li, et al., Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity, Miner. Eng., 163(2021), art. No. 106803.
[[5]]
Khoso SA, Hu YH, Liu RQ, et al.. Selective depression of pyrite with a novel functionally modified biopolymer in a Cu-Fe flotation system. Miner. Eng., 2019, 135: 55,
CrossRef Google scholar
[[6]]
H. Rezvanipour, A. Mostafavi, A. Ahmadi, M. Karimimobarakabadi, and M. Khezri, Desulfurization of iron ores: Processes and challenges, Steel Res. Int., 89(2018), No. 7, art. No. 1700568.
[[7]]
X. Jiang, W.J. Zhang, R.H. Fan, et al., Improved flotation of chalcopyrite from galena and pyrite by employing Cu-affinity phosphate collector, Miner. Eng., 197(2023), art. No. 108064.
[[8]]
Gu GH, Hu YH, Wang H, Qiu GZ, Wang DZ. Original potential flotation of galena and its industrial application. J. Cent. South Univ. Technol, 2002, 9(2): 91,
CrossRef Google scholar
[[9]]
Zhang XL, Kou J, Sun CB, Zhang RY, Su M, Li SF. Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings. Int. J. Miner. Metall. Mater., 2021, 28(6): 944,
CrossRef Google scholar
[[10]]
Zhang Q, Wen SM, Feng QC, Wang H. Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation. Int. J. Miner. Metall. Mater., 2022, 29(6): 1150,
CrossRef Google scholar
[[11]]
Northey S, Mohr S, Mudd GM, Weng Z, Giurco D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl., 2014, 83: 190,
CrossRef Google scholar
[[12]]
Mudd GM, Weng ZH, Jowitt MS. A detailed assessment of global Cu resource trends and endowments. Econ. Geol., 2013, 108(5): 1163,
CrossRef Google scholar
[[13]]
J. John, C. Evans, and N.W. Johnson, The influence of lime and sodium hydroxide conditioning on sulfide sulfur behaviour in pyrite flotation, Miner. Eng., 151(2020), art. No. 106304.
[[14]]
Liao RP, Wen SM, Feng QC, Deng JS, Lai H. Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite. Int. J. Miner. Metall. Mater., 2023, 30(2): 271,
CrossRef Google scholar
[[15]]
Li J, Dabrowski B, Miller JD, et al.. The influence of pyrite pre-oxidation on gold recovery by cyanidation. Miner. Eng., 2006, 19(9): 883,
CrossRef Google scholar
[[16]]
Guo B, Peng YJ, Parker G. Electrochemical and spectroscopic studies of pyrite-cyanide interactions in relation to the depression of pyrite flotation. Miner. Eng., 2016, 92: 78,
CrossRef Google scholar
[[17]]
X.H. Qiu, Z.J. Huang, F. Cao, D.S. Sun, P.P. Wang, and C.F. Chen, Flotation separation of chalcopyrite from pyrite using a novel O-n-butyl-N-isobutyl thionocarbamate as the selective collector, Colloids Surf. A: Physicochem. Eng. Aspects, 661(2023), art. No. 130890.
[[18]]
S.H. Wu, J.J. Wang, L.M. Tao, et al., Selective separation of chalcopyrite from pyrite using an acetylacetone-based lime-free process, Miner. Eng., 182(2022), art. No. 107584.
[[19]]
G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity, Miner. Eng., 143(2019), art. No. 106015.
[[20]]
Zhao LB, Xian YJ, Wen SM, Zhang S, Han G, Chen ZH. Research development of depression and activation separation of pyrite. Conserv. Util. Miner. Resour., 2020, 40(2): 74
[[21]]
Mehrabani JV, Mousavi SM, Noaparast M. Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead-zinc ore. Sep. Purif. Technol., 2011, 80(2): 202,
CrossRef Google scholar
[[22]]
Qiu XM, Yang HY, Chen GB, Tong LL, Jin ZN, Zhang Q. Interface behavior of chalcopyrite during flotation from cyanide tailings. Int. J. Miner. Metall. Mater., 2022, 29(3): 439,
CrossRef Google scholar
[[23]]
Zheng AP, Dzomba DA, Luthy RG, et al.. Evaluation and testing of analytical methods for cyanide species in municipal and industrial contaminated waters. Environ. Sci. Technol., 2003, 37(1): 107,
CrossRef Google scholar
[[24]]
Mu YF, Peng YJ, Lauten RA. The depression of pyrite in selective flotation by different reagent systems—A literature review. Miner. Eng., 2016, 96–97: 143,
CrossRef Google scholar
[[25]]
Mu YF, Peng YJ, Lauten RA. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochim. Acta, 2015, 174: 133,
CrossRef Google scholar
[[26]]
Boulton A, Fornasiero D, Ralston J. Selective depression of pyrite with polyacrylamide polymers. Int. J. Miner. Process., 2001, 61(1): 13,
CrossRef Google scholar
[[27]]
Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv. Colloid Interface Sci., 2011, 169(1): 1,
CrossRef Google scholar
[[28]]
Wang Z, Qian YL, Xu LH, Dai B, Xiao JH, Fu KB. Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant. Miner. Eng., 2015, 74: 86,
CrossRef Google scholar
[[29]]
Chen X, Gu GH, Li LJ, Chen ZX. Effect of food-grade guar gum on the flotation separation of chalcopyrite and monoclinic pyrrhotite in low-alkali systems. Physicochem. Probl. Miner. Process., 2018, 55: 437
[[30]]
X. Wang, J. Liu, Y.M. Zhu, and Y.X. Han, Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation, Colloids Surf. A: Physicochem. Eng. Aspects, 620(2021), art. No. 126574.
[[31]]
Li YQ, Chen JH, Chen Y. Electronic structures and flotation behavior of pyrite containing vacancy defects. Acta Phys. Chim. Sin., 2010, 26(5): 1435
[[32]]
Li YQ, Chen JH, Chen Y, Guo J. Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite. Trans. Nonferrous Met. Soc. China, 2011, 21(8): 1887,
CrossRef Google scholar
[[33]]
Savage KS, Stefan D, Lehner SW. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products. Appl. Geochem., 2008, 23(2): 103,
CrossRef Google scholar
[[34]]
Yu HD, Sun CY. Flotation characteristics of different geo-genetic type pyrite. Nonferrous Met., 2009, 61(3): 111
[[35]]
Pecina ET, Uribe A, Nava F, Finch JA. The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems. Miner. Eng., 2006, 19(2): 172,
CrossRef Google scholar
[[36]]
He S, Fornasiero D, Skinner W. Correlation between copper-activated pyrite flotation and surface species: Effect of pulp oxidation potential. Miner. Eng., 2005, 18(12): 1208,
CrossRef Google scholar
[[37]]
Chandra AP, Puskar L, Simpson DJ, Gerson AR. Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation. Int. J. Miner. Process., 2012, 114–117: 16,
CrossRef Google scholar
[[38]]
Zhao WJ, Yang B, Yi YH, Feng QC, Liu DW. Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption. Int. J. Min. Sci. Technol., 2023, 33(4): 519,
CrossRef Google scholar
[[39]]
Su C, Shen PL, Li JL, et al.. A review on depression and derepression of pyrite flotation. Chem. Ind. Eng. Prog., 2019, 38(4): 1921
[[40]]
C.I. Castellón, N. Toro, E. Gálvez, P. Robles, W.H. Leiva, and R.I. Jeldres, Froth flotation of chalcopyrite/pyrite ore: A critical review, Materials, 15(2022), No. 19, art. No. 6536.
[[41]]
R.L.J. Lee, X.M. Chen, and Y.J. Peng, Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion, Miner. Eng., 177(2022), art. No. 107387.
[[42]]
J.J. Wu, W.K. Ma, X.J. Wang, F. Jiao, and W.Q. Qin, The effect of galvanic interaction between chalcopyrite and pyrite on the surface chemistry and collector adsorption: Flotation and DFT study, Colloids Surf. A: Physicochem. Eng. Aspects, 607(2020), art. No. 125377.
[[43]]
S. Zou, S. Wang, X. Ma, and H. Zhong, Underlying synergistic collection mechanism of an emerging mixed reagent scheme in chalcopyrite flotation, J. Mol. Liq., 364(2022), art. No. 119948.
[[44]]
Chen XM, Peng YJ, Bradshaw D. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng., 2014, 58: 64,
CrossRef Google scholar
[[45]]
Hirajima T, Miki H, Suyantara GPW, et al.. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng., 2017, 100: 83,
CrossRef Google scholar
[[46]]
Han G, Wen SM, Wang H, Feng QC. Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant. Int. J. Min. Sci. Technol., 2021, 31(6): 1117,
CrossRef Google scholar
[[47]]
Goktepe F. Effect of pH on pulp potential and sulphide mineral flotation. Turk. J. Eng. Environ. Sci., 2002, 26: 309
[[48]]
Peng YJ, Wang B, Gerson A. The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. Int. J. Miner. Process., 2012, 102–103: 141,
CrossRef Google scholar
[[49]]
L. Yang, X.W. Zhou, H.S. Yan, H.L. Zhang, X.H. Liu, and T.S. Qiu, Effects of galvanic interaction between chalcopyrite and monoclinic pyrrhotite on their flotation separation, Minerals, 12(2021), No. 1, art. No. 39.
[[50]]
Rabieh A, Albijanic B, Eksteen JJ. A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations. Miner. Eng., 2016, 94: 21,
CrossRef Google scholar
[[51]]
Zhang XL, Qin YH, Han YX, et al.. A potential ceramic ball grinding medium for optimizing flotation separation of chalcopyrite and pyrite. Powder Technol., 2021, 392: 167,
CrossRef Google scholar
[[52]]
Y.B. Li, W.Q. Duan, W.Q. Li, X. Yang, and W. Chen, Oxidative flotation separation of chalcopyrite and pyrite using K2FeO4 in seawater, Miner. Process. Extr. Metall. Rev., 2022. DOI: https://doi.org/10.1080/08827508.2022.2155958.
[[53]]
W. Yang, X.H. Qiu, H.S. Yan, et al., Investigating the selectivity of calcium hypochlorite for flotation separation of chalcopyrite and pyrite pre-adsorbed collector, Physicochem. Probl. Miner. Process., 58(2022), No. 4, art. No. 150703.
[[54]]
Feng JL, Tian H, Huang YL, Ding ZY, Yin ZL. Pyrite oxidation mechanism in aqueous medium. J. Chin. Chem. Soc., 2019, 66(4): 345,
CrossRef Google scholar
[[55]]
X.P. Niu, J.H. Chen, Y.Q. Li, et al., Correlation of surface oxidation with xanthate adsorption and pyrite flotation, Appl. Surf. Sci., 495(2019), art. No. 143411.
[[56]]
Tu ZH, Wan JJ, Guo CL, et al.. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochim. Acta, 2017, 239: 25,
CrossRef Google scholar
[[57]]
T.S. Qiu, X.P. Luo, and X.H. Fang, Study on depression behavior and oxidation mechanism of pyrite, Multipurp. Util. Miner. Resour., 2001, No. 5, p. 17.
[[58]]
X.Y. Yu, Y. Zhou, and H. Zhong, Depressor for Cu-S separation in low alkaline medium and its depressing mechanism, Met. Mine, 2008, No. 9, p. 65.
[[59]]
S.J. Bai, P. Yu, C.L. Li, S.M. Wen, and Z. Ding, Depression of pyrite in a low-alkaline medium with added calcium hypo-chlorite: Experiment, visual MINTEQ models, XPS, and ToF-SIMS studies, Miner. Eng., 141(2019), art. No. 105853.
[[60]]
Schoonen MAA, Harrington AD, Laffers R, Strongin DR. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochim. Cosmochim. Acta, 2010, 74(17): 4971,
CrossRef Google scholar
[[61]]
Hermosilla D, Cortijo M, Huang CP. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ., 2009, 407(11): 3473,
CrossRef Google scholar
[[62]]
Aftab B, Shin HS, Hur J. Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARA-FAC and 2D-COS-FTIR. J. Hazard. Mater., 2018, 354: 33,
CrossRef Google scholar
[[63]]
Khoso SA, Hu YH, F, Gao Y, Liu RQ, Sun W. Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite. Trans. Nonferrous Met. Soc. China, 2019, 29(12): 2604,
CrossRef Google scholar
[[64]]
X. Yang, Y.B. Li, R. Fan, W.Q. Duan, L.Y. Huang, and Q. Xiao, Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low-alkaline seawater flotation system, Miner. Eng., 176(2022), art. No. 107356.
[[65]]
Z. Ding, Y.X. Bi, J. Li, J.Q. Yuan, H.X. Dai, and S.J. Bai, Flotation separation of chalcopyrite and pyrite via Fenton oxidation modification in a low alkaline acid mine drainage (AMD) system, Miner. Eng., 187(2022), art. No. 107818.
[[66]]
Wang XH, Eric Forssberg KS. Mechanisms of pyrite flotation with xanthates. Int. J. Miner. Process., 1991, 33(1–4): 275,
CrossRef Google scholar
[[67]]
C.T. Wang, R.Q. Liu, Q.L. Zhai, et al., Exploring the effect of pulp aeration and lime-aid grinding on pyrrhotite-rich type copper sulfide ore flotation separation, Sep. Purif. Technol., 311(2023), art. No. 123268.
[[68]]
Miller JD, Du Plessis R, Kotylar DG, Zhu X, Simmons GL. The low-potential hydrophobic state of pyrite in amyl xanthate flotation with nitrogen. Int. J. Miner. Process., 2002, 67(1–4): 1,
CrossRef Google scholar
[[69]]
Feng QC, Yang WH, Wen SM, Wang H, Zhao WJ, Han G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol., 2022, 32(6): 1351,
CrossRef Google scholar
[[70]]
Janetski ND, Woodburn SI, Woods R. An electrochemical investigation of pyrite flotation and depression. Int. J. Miner. Process., 1977, 4(3): 227,
CrossRef Google scholar
[[71]]
Q.C. Feng, M.L. Wang, G. Zhang, W.J. Zhao, and G. Han, Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification, Sep. Purif. Technol., 307(2023), art. No. 122772.
[[72]]
Khmeleva TN, Beattie DA, Georgiev TV, Skinner WM. Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate. Miner. Eng., 2003, 16(7): 601,
CrossRef Google scholar
[[73]]
Khmeleva TN, Skinner W, Beattie DA. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite. Int. J. Miner. Process., 2005, 76(1–2): 43,
CrossRef Google scholar
[[74]]
Dávila-Pulido GI, Uribe-Salas A, Espinosa-Gómez R. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite. Int. J. Miner. Process., 2011, 101(1–4): 71,
CrossRef Google scholar
[[75]]
Y.F. Mu and Y.J. Peng, The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water, Miner. Eng., 142(2019), art. No. 105921.
[[76]]
Khmeleva TN, Skinner W, Beattie DA, Georgiev TV. The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite. Physicochem. Probl. Miner. Process., 2002, 36: 185
[[77]]
Bulut G, Ceylan A, Soylu B, Goktepe F. Role of starch and metabisuphite on pure pyrite and pyritic copper ore flotation. Physicochem. Probl. Miner. Process., 2012, 48(1): 39
[[78]]
Cai JZ, Deng JS, Wang L, et al.. Reagent types and action mechanisms in ilmenite flotation: A review. Int. J. Miner. Metall. Mater., 2022, 29(9): 1656,
CrossRef Google scholar
[[79]]
Valdivieso AL, Cervantes TC, Song S, Cabrera AR, Laskowski JS. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner. Eng., 2004, 17(9–10): 1001,
CrossRef Google scholar
[[80]]
Buckley AN, Woods R. The surface oxidation of pyrite. Appl. Surf. Sci., 1987, 27(4): 437,
CrossRef Google scholar
[[81]]
Fornasiero D, Eijt V, Ralston J. An electrokinetic study of pyrite oxidation. Colloids Surf., 1992, 62(1–2): 63,
CrossRef Google scholar
[[82]]
Bebie J, Schoonen MAA, Fuhrmann M, Strongin DR. Surface charge development on transition metal sulfides: An electrokinetic study. Geochim. Cosmochim. Acta, 1998, 62(4): 633,
CrossRef Google scholar
[[83]]
Todd EC, Sherman DM, Purton JA. Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: Electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim. Cosmochim. Acta, 2003, 67(5): 881,
CrossRef Google scholar
[[84]]
Liu Q, Laskowski JS, Li Y, Wang DF. Synergistic effect of mineral surface constituents in dextrin adsorption. Int. J. Miner. Process., 1994, 42(3–4): 251,
CrossRef Google scholar
[[85]]
Bogusz E, Brienne SR, Butler I, Rao SR, Finch JA. Metal ions and dextrin adsorption on pyrite. Miner. Eng., 1997, 10(4): 441,
CrossRef Google scholar
[[86]]
D.Z. Liu, G.F. Zhang, Y.F. Chen, G.H. Huang, and Y.W. Gao, Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite, Miner. Eng., 145(2020), art. No. 106098.
[[87]]
X.L. Zhang, X. Wang, Y.J. Li, Y.X. Han, X.T. Gu, and S.X. Wang, Adsorption mechanism of a new depressant on pyrite surfaces and its application to the selective separation of chal-copyrite from pyrite, Colloids Surf. A: Physicochem. Eng. Aspects, 625(2021), art. No. 126892.
[[88]]
Bicak O, Ekmekci Z, Bradshaw DJ, Harris PJ. Adsorption of guar gum and CMC on pyrite. Miner. Eng., 2007, 20(10): 996,
CrossRef Google scholar
[[89]]
Qiu XH, Sun CY. Influence of the addition orders of guar gum and tannic acid on sulfide flotation. J. Univ. Sci. Technol. Beijing, 2014, 36(3): 283
[[90]]
Guo W, Feng B, Peng JX, Zhang WP, Zhu XW. Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. J. Mater. Res. Technol., 2019, 8(1): 697,
CrossRef Google scholar
[[91]]
Z.H. Shen, S.M. Wen, G. Han, Y.W. Zhou, X. Bai, and Q.C. Feng, Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media, Miner. Eng., 170(2021), art. No. 107044.
[[92]]
Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol., 1978, 117(3): 277,
CrossRef Google scholar
[[93]]
Feng B, Zhang LZ, Zhang WP, Wang HH, Gao ZY. Mechanism of calcium lignosulfonate in apatite and dolomite flotation system. Int. J. Miner. Metall. Mater., 2022, 29(9): 1697,
CrossRef Google scholar
[[94]]
Liu RQ, Sun W, Hu YH, Wang DZ. Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite. J. Cent. South Univ. Technol., 2009, 16(5): 753,
CrossRef Google scholar
[[95]]
Mu YF, Peng YJ, Lauten RA. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner. Eng., 2016, 96–97: 113,
CrossRef Google scholar
[[96]]
Mu YF, Peng YJ, Lauten RA. The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Miner. Eng., 2016, 92: 37,
CrossRef Google scholar
[[97]]
B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532.
[[98]]
S.A. Khoso, Y.H. Hu, M.J. Tian, Z.Y. Gao, and W. Sun, Evaluation of green synthetic depressants for sulfide flotation: Synthesis, characterization and floatation performance to pyrite and chalcopyrite, Sep. Purif. Technol., 259(2021), art. No. 118138.
[[99]]
Khoso SA, Gao ZY, Tian MJ, Hu YH, Sun W. Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu-Fe sulphides. J. Mater. Res. Technol., 2019, 8(6): 5422,
CrossRef Google scholar
[[100]]
Khoso SA, Hu YH, Lyu F, Liu RQ, Sun W. Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant. J. Clean. Prod., 2019, 232: 888,
CrossRef Google scholar
[[101]]
S.A. Khoso, Z.Y. Gao, M.J. Tian, Y.H. Hu, and W. Sun, The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in Cu-S flotation scheme, J. Mol. Liq., 299(2020), art. No. 112198.
[[102]]
Xu WH, Han EH, Wang ZY. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. J. Mater. Sci. Technol., 2019, 35(1): 64,
CrossRef Google scholar
[[103]]
Han G, Wen SM, Wang H, Feng QC. Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium. J. Mater. Res. Technol., 2020, 9(3): 4421,
CrossRef Google scholar
[[104]]
J. Lu, K. Zhu, B. Hou, and Y.F. Zhao, General situation of the reaction mechanisms of humic substances with heavy metal ions in soil, Humic Acid, 2006, No. 5, p. 1.
[[105]]
Han YM. Functions of sodium humate in flotation of the sulphide minerals containing low copper. J. Wuhan Univ. Sci. Technol. (Nat. Sci. Ed.), 2002, 25(4): 342
[[106]]
Chen JH, Li YQ, Chen Y. Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium. Miner. Eng., 2011, 24(1): 58,
CrossRef Google scholar
[[107]]
Chen W, Feng QM, Zhang GF, Liu C, Meng FW. Utilization of pyrogallol in flotation separation of scheelite from calcite. Sep. Sci. Technol., 2021, 56(4): 738,
CrossRef Google scholar
[[108]]
Gao JD, Sun W, Hu YH, et al.. Propyl gallate: A novel collector for flotation separation of fluorite from calcite. Chem. Eng. Sci., 2019, 193: 255,
CrossRef Google scholar
[[109]]
J.Y. He, Y.H. Hu, W. Sun, et al., Computational insights into the adsorption mechanism of Gallic acid-bearing reagents on calcium-bearing mineral surfaces, Miner. Eng., 156(2020), art. No. 106485.
[[110]]
G. Han, S.M. Wen, H. Wang, Q.C. Feng, and X. Bai, Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions, Sep. Purif. Technol., 267(2021), art. No. 118670.
[[111]]
G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite, Sep. Purif. Technol., 240(2020), art. No. 116650.
[[112]]
G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism, J. Mol. Liq., 296(2019), art. No. 111774.
[[113]]
Y.H. Zhang, Mirror symmetry rule for the interaction between flotation reagents and mineral interfaces, Nonferrous Met. Miner. Process. Sect., 2016, No. 4, p. 87.
[[114]]
Cui YF, Jiao F, Qin WQ, Dong LY, Wang X. Synergistic depression mechanism of zinc sulfate and sodium dimethyl dithiocarbamate on sphalerite in Pb-Zn flotation system. Trans. Nonferrous Met. Soc. China, 2020, 30(9): 2547,
CrossRef Google scholar
[[115]]
X. Bai, J. Liu, S.M. Wen, and Y.L. Lin, Selective separation of chalcopyrite and pyrite using a novel organic depressant at low alkalinity, Miner. Eng., 185(2022), art. No. 107677.
[[116]]
Bai X, Liu J, Wen SM, Lin YL. Effect and mechanism of organic depressant on the hydrophobicity of chalcopyrite and pyrite under weakly alkaline environment. J. Mater. Res. Technol., 2021, 15: 4109,
CrossRef Google scholar
[[117]]
Agorhom EA, Skinner W, Zanin M. Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Miner. Eng., 2014, 57: 36,
CrossRef Google scholar
[[118]]
Ahmadi M, Gharabaghi M, Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Adv. Powder Technol., 2018, 29(12): 3155,
CrossRef Google scholar
[[119]]
Saim AK, Darteh FK. Eco-friendly and biodegradable depressants in chalcopyrite flotation: A review. Miner. Process. Extr. Metall. Rev., 2023, 44(7): 492,
CrossRef Google scholar
[[120]]
X. Tian, E. Furnell, and E.R. Bobicki, Predicting the fate of di-ethylenetriamine in pyrrhotite tailings management, Miner. Eng., 176(2022), art. No. 107335.

Accesses

Citations

Detail

Sections
Recommended

/