Role of tannin pretreatment in flotation separation of magnesite and dolomite

Xiufeng Gong, Jin Yao, Jun Guo, Bin Yang, Haoran Sun, Wanzhong Yin, Yulian Wang, Yafeng Fu

International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (3) : 452-461. DOI: 10.1007/s12613-023-2708-4
Research Article

Role of tannin pretreatment in flotation separation of magnesite and dolomite

Author information +
History +

Abstract

Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem. Recently, new regulators have been proposed for magnesite flotation decalcification, although traditional regulators such as tannin, water glass, sodium carbonate, and sodium hexametaphosphate are more widely used in industry. However, they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests. Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing, we used a tannin pretreatment method for separating magnesite and dolomite. Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite. Moreover, the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased, respectively, in the presence of NaOl. Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface. X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.

Keywords

tannin pretreatment / selective inhibition / flotation separation / magnesite / dolomite

Cite this article

Download citation ▾
Xiufeng Gong, Jin Yao, Jun Guo, Bin Yang, Haoran Sun, Wanzhong Yin, Yulian Wang, Yafeng Fu. Role of tannin pretreatment in flotation separation of magnesite and dolomite. International Journal of Minerals, Metallurgy, and Materials, 2024, 31(3): 452‒461 https://doi.org/10.1007/s12613-023-2708-4

References

[[1]]
Adam CL, Hemingway RG, Ritchie NS. Influence of manufacturing conditions on the bioavailability of magnesium in calcined magnesites measured in vivo and in vitro. J. Agric. Sci., 1996, 127(3): 377,
CrossRef Google scholar
[[2]]
Aksel C, Kasap F, Sesver A. Investigation of parameters affecting grain growth of sintered magnesite refractories. Ceram. Int., 2005, 31(1): 121,
CrossRef Google scholar
[[3]]
Aleksandrov SM, Senin VG. Genesis, composition, and evolution of sulfide mineralization in magnesian skarns. Geochem. Int., 2005, 43(6): 559
[[4]]
Guo M, Li Q, Liu HN, et al.. The exploitation and utilization of magnesium resources in salt lakes. Prog. Chem., 2009, 21(11): 2358
[[5]]
Cai JZ, Deng JS, Wang L, et al.. Reagent types and action mechanisms in ilmenite flotation: A review. Int. J. Miner. Metall. Mater., 2022, 29(9): 1656,
CrossRef Google scholar
[[6]]
D. Wonyen, V. Kromah, B. Gibson, S. Nah, and S. Chelgani, A review of flotation separation of Mg carbonates (dolomite and magnesite), Minerals, 8(2018), No. 8, art. No. 354.
[[7]]
Chang ZY, Niu SS, Shen ZC, Zou LC, Wang HJ. Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications. Int. J. Miner. Metall. Mater., 2023, 30(7): 1244,
CrossRef Google scholar
[[8]]
Zhu ZL, Fu YF, Yin WZ, et al.. Role of surface roughness in the magnesite flotation and its mechanism. Particuology, 2022, 62: 63,
CrossRef Google scholar
[[9]]
H.R. Sun, F. Han, W.Z. Yin, J. Hong, and B. Yang, Modification of selectivity in the flotation separation of magnesite from dolomite, Colloids Surf. A: Physicochem. Eng. Aspects, 606(2020), art. No. 125460.
[[10]]
Y.F. Fu, Y. Hou, R. Wang, et al., Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate, Miner. Eng., 173(2021), art. No. 107191.
[[11]]
Li MY, Yang C, Wu ZY, et al.. Selective depression action of taurine in flotation separation of specularite and chlorite. Int. J. Min. Sci. Technol., 2022, 32(3): 637,
CrossRef Google scholar
[[12]]
Feng B, Zhang LZ, Zhang WP, Wang HH, Gao ZY. Mechanism of calcium lignosulfonate in apatite and dolomite flotation system. Int. J. Miner. Metall. Mater., 2022, 29(9): 1697,
CrossRef Google scholar
[[13]]
Bastrzyk A, Polowczyk I, Sadowski Z, Sikora A. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Sep. Purif. Technol., 2011, 77(3): 325,
CrossRef Google scholar
[[14]]
Q. Dehaine, L.O. Filippov, I.V. Filippova, L.T. Tijsseling, and H.J. Glass, Novel approach for processing complex carbonate-rich copper–cobalt mixed ores via reverse flotation, Miner. Eng., 161(2021), art. No. 106710.
[[15]]
Li D, Yin WZ, Xue JW, Yao J, Fu YF, Liu Q. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate. Int. J. Miner. Metall. Mater., 2017, 24(7): 736,
CrossRef Google scholar
[[16]]
Liu X, Li CX, Luo HH, Cheng RJ, Liu FY. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int. J. Miner. Process., 2017, 165: 20,
CrossRef Google scholar
[[17]]
M.P. Majewska, R. Miltko, G. Bełżecki, A. Kędzierska, and B. Kowalik, Comparison of the effect of synthetic (tannic acid) or natural (oak bark extract) hydrolysable tannins addition on fatty acid profile in the rumen of sheep, Animals, 12(2022), No. 6, art. No. 699.
[[18]]
J. Yao, H.R. Sun, X.Q. Ban, and W.Z. Yin, Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids Surf. A: Physicochem. Eng. Aspects, 618(2021), art. No. 126448.
[[19]]
W.Z. Yin, H.R. Sun, J. Hong, et al., Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite, Miner. Eng., 144(2019), art. No. 106050.
[[20]]
Yao J, Yang B, Chen KQ, et al.. Sodium tripolyphosphate as a selective depressant for separating magnesite from dolomite and its depression mechanism. Powder Technol., 2021, 382: 244,
CrossRef Google scholar
[[21]]
Zhu YG, Yang LF, Hu XX, Zhang XR, Zheng GB. Flotation separation of quartz from magnesite using carboxymethyl cellulose as depressant. Trans. Nonferrous Met. Soc. China, 2022, 32(5): 1623,
CrossRef Google scholar
[[22]]
Han H, Liu A, Wang CL, Yang RQ, Li S, Wang HF. Flotation kinetics performance of different coal size fractions with nanobubbles. Int. J. Miner. Metall. Mater., 2022, 29(8): 1502,
CrossRef Google scholar
[[23]]
H.R. Sun, B. Yang, Z.L. Zhu, et al., New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660.
[[24]]
Yang B, Wang DH, Cao SH, et al.. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite. J. Colloid Interface Sci., 2020, 578: 290,
CrossRef Pubmed Google scholar
[[25]]
Zhang CH, Wei S, Hu YH, et al.. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals. J. Colloid Interface Sci., 2018, 512: 55,
CrossRef Pubmed Google scholar
[[26]]
Chen GL, Tao D. Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate. Sep. Sci. Technol., 2005, 39(2): 377,
CrossRef Google scholar
[[27]]
Liu WB, Huang WX, Rao F, Zhu ZL, Zheng YM, Wen SM. Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite. Int. J. Miner. Metall. Mater., 2022, 29(3): 446,
CrossRef Google scholar
[[28]]
Oliveira GA, Machado L, Knoll RS, Dell’Osbel N, Colares GS, Rodrigues LR. Combined system for wastewater treatment: Ozonization and coagulation via tannin-based agent for harvesting microalgae by dissolved air flotation. Environ. Technol., 2022, 43(9): 1370,
CrossRef Pubmed Google scholar
[[29]]
Murugananthan M, Bhaskar Raju G, Prabhakar S. Removal of tannins and polyhydroxy phenols by electro-chemical techniques. J. Chem. Technol. Biotechnol., 2005, 80(10): 1188,
CrossRef Google scholar
[[30]]
Chen JH, Li YQ, Long QR, Wei ZW, Chen Y. Improving the selective flotation of jamesonite using tannin extract. Int. J. Miner. Process., 2011, 100(1–2): 54,
CrossRef Google scholar
[[31]]
Sarquís PE, Menéndez-Aguado JM, Mahamud MM, Dzioba R. Tannins: The organic depressants alternative in selective flotation of sulfides. J. Clean. Prod., 2014, 84: 723,
CrossRef Google scholar
[[32]]
Shen ZH, Wen SM, Wang H, et al.. Effect of dissolved components of malachite and calcite on surface properties and flotation behavior. Int. J. Miner. Metall. Mater., 2023, 30(7): 1297,
CrossRef Google scholar
[[33]]
Yao J, Sun HR, Han F, et al.. Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control. Powder Technol., 2020, 362: 698,
CrossRef Google scholar
[[34]]
B. Yang, H.R. Sun, D.H. Wang, et al., Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Sep. Purif. Technol., 250(2020), art. No. 117278.
[[35]]
Gülcan E, Gülsoy Y. Performance evaluation of optical sorting in mineral processing—A case study with quartz, magnesite, hematite, lignite, copper and gold ores. Int. J. Miner. Process., 2017, 169: 129,
CrossRef Google scholar
[[36]]
Yilmaz Atay H, Çirak M. Separation of huntite and hydromagnesite from magnesite in combination of physicochemical treatment and size reduction. Ain Shams Eng. J., 2019, 10(1): 113,
CrossRef Google scholar
[[37]]
L.L. Godirilwe, R.S. Magwaneng, R. Sagami, et al., Extraction of copper from complex carbonaceous sulfide ore by direct high-pressure leaching, Miner. Eng., 173(2021), art. No. 107181.
[[38]]
Wang TC, Sun GJ, Deng JS, et al.. A depressant for marmatite flotation: Synthesis, characterisation and floatation performance. Int. J. Miner. Metall. Mater., 2023, 30(6): 1048,
CrossRef Google scholar
[[39]]
X.F. Gong, J. Yao, B. Yang, J. Guo, H.R. Sun, and W.Z. Yin, Study on the inhibition mechanism of guar gum in the flotation separation of brucite and dolomite in the presence of SDS, J. Mol. Liq., 380(2023), art. No. 121721.
[[40]]
Xue JW, Tu HZ, Shi J, An YN, Wan H, Bu XZ. Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor. Int. J. Miner. Metall. Mater., 2023, 30(7): 1310,
CrossRef Google scholar
[[41]]
Luo LP, Xu LH, Shi XZ, Meng JP, Liu RH. Microscale insights into the influence of grinding media on spodumene micro-flotation using mixed anionic/cationic collectors. Int. J. Min. Sci. Technol., 2022, 32(1): 171,
CrossRef Google scholar
[[42]]
X.F. Gong, J. Yao, B. Yang, et al., Activation–inhibition mechanism of diammonium hydrogen phosphate in flotation separation of brucite and calcite, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 110184.
[[43]]
Wu ZX, Tao DP, Tao YJ, Jiang M, Zhang P. A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions. Int. J. Miner. Metall. Mater., 2023, 30(6): 1038,
CrossRef Google scholar
[[44]]
Ma FY, Zhang P, Tao DP. Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review. Int. J. Miner. Metall. Mater., 2022, 29(4): 727,
CrossRef Google scholar
[[45]]
Gence N. Wetting behavior of magnesite and dolomite surfaces. Appl. Surf. Sci., 2006, 252(10): 3744,
CrossRef Google scholar
[[46]]
B. Yang, W.Z. Yin, Z.L. Zhu, et al., Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite, Sep. Purif. Technol., 256(2021), art. No. 117803.
[[47]]
Wang YH, Sun N, Chu HR, Zheng XY, Lu DF, Zheng HT. Surface dissolution behavior and its influences on the flotation separation of spodumene from silicates. Sep. Sci. Technol., 2021, 56(8): 1407,
CrossRef Google scholar
[[48]]
B. Yang, Z.L. Zhu, H.R. Sun, et al., Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492.
[[49]]
Yin WZ, Yang B, Fu YF, et al.. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol., 2019, 343: 578,
CrossRef Google scholar
[[50]]
R.Q. Xie, X. Tong, X. Xie, Y.M. Zhu, and J. Liu, Flaxseed gum as new depressant in the separation of apatite and dolomite and its mechanism, Appl. Surf. Sci., 593(2022), art. No. 153390.
[[51]]
J. Yao, X.F. Gong, H.R. Sun, R.F. He, and W.Z. Yin, Separation of magnesite and calcite based on flotation solution chemistry, Physicochem. Probl. Miner. Process., 58(2022), No. 4, art. No. 149398.
[[52]]
J.J. Wang, W.H. Li, Z.H. Zhou, Z.Y. Gao, Y.H. Hu, and W. Sun, 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism, Chem. Eng. Sci., 214(2020), art. No. 115369.
[[53]]
Y. Tang, H.R. Sun, W.Z. Yin, et al., Computational modeling of cetyl phosphate adsorption on magnesite (104) surface, Miner. Eng., 171(2021), art. No. 107123.
[[54]]
Y. Tang, W.Z. Yin, and S. Kelebek, Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate, Colloids Surf. A: Physicochem. Eng. Aspects, 610(2021), art. No. 125928.

Accesses

Citations

Detail

Sections
Recommended

/