Metal-organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions

Haiyan Li , Yuzhao Wang , Fanqi Meng , Wei Mao , Xingzhong Cao , Yi Bian , Hao Zhang , Yong Jiang , Nuofu Chen , Jikun Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2441 -2450.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2441 -2450. DOI: 10.1007/s12613-023-2703-9
Article

Metal-organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions

Author information +
History +
PDF

Abstract

The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates (RENiO3) triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications, e.g. ocean electric field sensor, bio-sensor, and neuron synapse logical devices. Nevertheless, these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO3 with flexibly adjustable rare-earth compositions and electronic structures. Herein, we demonstrate a metal-organic decompositions (MOD) approach that can effectively grow metastable RENiO3 covering a large variety of the rare-earth composition without introducing any vacuum process. Unlike the previous chemical growths for RENiO3 relying on strict interfacial coherency that limit the film thickness, the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions. Further indicated by positron annihilation spectroscopy, the RENiO3 grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers, as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis. This effectively enlarges the magnitude in the resistance regulations in particular for RENiO3 with lighter RE, shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.

Keywords

metal-insulator transition / rare earth nickelates / lattice defects / hydrogen incorporation / metal-organic decomposition

Cite this article

Download citation ▾
Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, Jikun Chen. Metal-organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(12): 2441-2450 DOI:10.1007/s12613-023-2703-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Z, Schwanz D, Narayanan B, et al. Perovskite nickelates as electric-field sensors in salt water. Nature, 2018, 553(7686): 68.

[2]

Zhou Y, Guan XF, Zhou H, et al. Nature, 2016, 534(7606): 231.

[3]

Sun YF, Kotiuga M, Lim D, et al. Proc. Natl. Acad. Sci. USA, 2018, 115(39): 9672.

[4]

J. Shi, Y. Zhou, and S. Ramanathan, Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping, Nat. Commun., 5(2014), art. No. 4860.

[5]

Nat. Commun., 2017, 8(1) art. No. 240

[6]

Nat. Commun., 2020, 11(1) art. No. 2245

[7]

Nat. Commun., 2019, 10(1) art. No. 1651

[8]

Yoon H, Choi M, Lim TW, et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater., 2016, 15(10): 1113.

[9]

Lu NP, Zhang PF, Zhang QH, et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature, 2017, 546(7656): 124.

[10]

Wei ZX, Wang ZY, Xu CQ, et al. Defect-induced insulator-metal transition and negative permittivity in La1−xBaxCoO3 perovskite structure. J. Mater. Sci. Technol., 2022, 112, 77.

[11]

Fang SJ, Pang ZY, Wang FG, Lin L, Han SH. Annealing effect on transport and magnetic properties of La0.67Sr0.33MnO3 thin films grown on glass substrates by RF magnetron sputtering. J. Mater. Sci. Technol., 2011, 27(3): 223.

[12]

Zhou XF, Jia ZR, Feng AL, et al. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon, 2019, 152, 827.

[13]

Wu HJ, Wu GL, Wang LD. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol., 2015, 269, 443.

[14]

Catalan G. Progress in perovskite nickelate research. Phase Transitions, 2008, 81(7–8): 729.

[15]

Chen JK, Hu HY, Wang JO, et al. Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates. Mater. Horiz., 2019, 6(4): 788.

[16]

Phys. Rev. Lett., 2021, 126(18) art. No. 187602

[17]

Jaramillo R, Ha SD, Silevitch DM, Ramanathan S. Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates. Nat. Phys., 2014, 10(4): 304.

[18]

Phys. Rev. Lett., 2005, 94(22) art. No. 226602

[19]

Phys. Rev. Lett., 2007, 98(17) art. No. 176406

[20]

Li D, Lee K, Wang BY, et al. Superconductivity in an infinite-layer nickelate. Nature, 2019, 572(7771): 624.

[21]

Adv. Mater., 2020, 32(6) art. No. 1905060

[22]

Lu H, Rossi M, Nag A, et al. Magnetic excitations in infinite-layer nickelates. Science, 2021, 373(6551): 213.

[23]

E. Been, W.S. Lee, H.Y. Hwang, et al., Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates, Phys. Rev. X, 11(2021), No. 1, art. No. 011050.

[24]

Li HF, Meng FQ, Bian Y, et al. Frequency regulation in alternation-current transports across metal to insulator transitions of thin film correlated perovskite nickelates. J. Mater. Sci. Technol., 2023, 148, 235.

[25]

Jaramillo R, Schoofs F, Ha SD, Ramanathan S. High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates. J. Mater. Chem. C, 2013, 1(13): 2455.

[26]

Appl. Phys. Lett., 2014, 105(1) art. No. 012108

[27]

Ambrosini A, Hamet JF. SmxNd1−x NiO3 thin-film solid solutions with tunable metal-insulator transition synthesized by alternate-target pulsed-laser deposition. Appl. Phys. Lett., 2003, 82(5): 727.

[28]

J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nat. Commun., 4(2013), art. No. 2676.

[29]

Phys. Rev. B, 2013, 88(19) art. No. 195108

[30]

Appl. Phys. Lett., 2007, 91(19) art. No. 192110

[31]

Vest RW. Metallo-organic decomposition (MOD) processing of ferroelectric and electro-optic films: A review. Ferroelectrics, 1990, 102(1): 53.

[32]

Vest GM, Singaram S. Synthesis of metallo-organic compounds for mod powders and films. MRS Online Proc. Libr., 1985, 60(1): 35.

[33]

Nikulin IV, Novojilov MA, Kaul AR, Mudretsova SN, Kondrashov SV. Oxygen nonstoichiometry of NdNiO3−δ and SmNiO3−δ. Mater. Res. Bull., 2004, 39(6): 775.

[34]

Escote MT, da Silva AML, Matos JR, Jardim RF. General properties of polycrystalline LnNiO3 (Ln = Pr, Nd, Sm) compounds prepared through different precursors. J. Solid State Chem., 2000, 151(2): 298.

[35]

Chen JK, Hu HY, Wang JO, et al. A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates. ACS Appl. Mater. Interfaces, 2019, 11(37): 34128.

[36]

Wang BY, Ma YY, Zhang Z, Yu RS, Wang P. Performance of the Beijing pulsed variable-energy positron beam. Appl. Surf. Sci., 2008, 255(1): 119.

[37]

Appl. Phys. Lett., 2022, 120(9) art. No. 092103

[38]

Appl. Phys. Lett., 2015, 107(3) art. No. 031905

[39]

Kleiner K, Melke J, Merz M, et al. Unraveling the degradation process of LiNi0.8Co0.15Al0.05O2 electrodes in commercial lithium ion batteries by electronic structure investigations. ACS Appl. Mater. Interfaces, 2015, 7(35): 19589.

[40]

J. Electrochem. Soc., 2000, 147(5) art. No. 1651

[41]

Kobayashi H, Shikano M, Koike S, Sakaebe H, Tatsumi K. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells. J. Power Sources, 2007, 174(2): 380.

[42]

Wilde M, Fukutani K. Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis. Surf. Sci. Rep., 2014, 69(4): 196.

[43]

Nat. Commun., 2019, 10(1) art. No. 694

[44]

Mao W, Wilde M, Chikada T, et al. Fabrication and hydrogen permeation properties of epitaxial Er2O3 films revealed by nuclear reaction analysis. J. Phys. Chem. C, 2016, 120(28): 15147.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/