Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content
Thongsuk Sichumsaeng , Atchara Chinnakorn , Ornuma Kalawa , Jintara Padchasri , Pinit Kidkhunthod , Santi Maensiri
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1887 -1896.
Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content
The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide (NNMO) prepared by sol–gel and electrospinning methods is investigated in this paper. X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss, while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content. Compared with the sol–gel method, the secondary phase of NiO is more suppressed by using the electrospinning method, which is further confirmed by field emission scanning electron microscope images. N2 adsorption–desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents. The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are +2 and +4, respectively. For the electrochemical properties, superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%. The highest specific capacitance is 36.07 F·g−1 at 0.1 A·g−1 in the NNMO electrode prepared by using the sol–gel method. By contrast, the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100% after charge–discharge measurements for 300 cycles. Therefore, controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
sodium nickel manganese oxide / mixed P2/O′3-type / Na-excess content / sol–gel method / electrospinning method / electrochemical properties
| [1] |
Z. Cheng, H. Pan, F. Li, et al., Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy, Nat. Commun., 13(2022), art. No. 125. |
| [2] |
H.H. Sun, U.H. Kim, J.H. Park, et al., Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries, Nat. Commun., 12(2021), art. No. 6552. |
| [3] |
M.Z. Chen, Y.Y. Zhang, G.C. Xing, and Y.X. Tang, Building high power density of sodium-ion batteries: Importance of multidimensional diffusion pathways in cathode materials, Front. Chem., 8(2020), art. No. 152. |
| [4] |
K. Liu, Y.Y. Liu, D.C. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(2018), No. 6, art. No. eaas9820. |
| [5] |
L.N. Chen, Y.M. Zhang, C.Y. Hao, et al., Interlayer engineering of KxMnO2 enables superior alkali metal ion storage for advanced hybrid capacitors, ChemElectroChem, 9(2022), No. 12, art. No. e202200059. |
| [6] |
Z.N. Tian, Y.G. Zou, G. Liu, Y.Z. Wang, J. Yin, J. Ming, and H.N. Alshareef, Electrolyte solvation structure design for sodium ion batteries, Adv. Sci., 9(2022), No. 22, art. No. 2201207. |
| [7] |
|
| [8] |
S. Biswas, A. Chowdhury, and A. Chandra, Performance of Na-ion supercapacitors under non-ambient conditions—From temperature to magnetic field dependent variation in specific capacitance, Front. Mater., 6(2019), art. No. 54. |
| [9] |
A. Chowdhury, S. Biswas, D. Mandal, and A. Chandra, Facile strategy of using conductive additive supported NaMnPO4 nanoparticles for delivering high performance Na-ion supercapacitors, J. Alloys Compd., 902(2022), art. No. 163733. |
| [10] |
|
| [11] |
|
| [12] |
Q.H. Shi, R.J. Qi, X.C. Feng, et al., Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries, Nat. Commun., 13(2022), art. No. 3205. |
| [13] |
|
| [14] |
|
| [15] |
M. Keller, D. Buchholz, and S. Passerini, Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases, Adv. Energy Mater., 6(2016), No. 3, art. No. 1501555. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
F. Fu, X. Liu, X.G. Fu, et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries, Nat. Commun., 13(2022), art. No. 2826. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
L.F. Pfeiffer, N. Jobst, C. Gauckler, et al., Layered P2-NaxMn3/4Ni1/4O2 cathode materials for sodium-ion batteries: Synthesis, electrochemistry and influence of ambient storage, Front. Energy Res., 10(2022), art. No. 910842. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
L.Q. Mai, H. Li, Y.L. Zhao, et al., Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor, Sci. Rep., 3(2013), art. No. 1718. |
| [35] |
A. Singh and A. Chandra, Enhancing specific energy and power in asymmetric supercapacitors - A synergetic strategy based on the use of redox additive electrolytes, Sci. Rep., 6(2016), art. No. 25793. |
| [36] |
|
| [37] |
|
| [38] |
Q.L. Fan, K.J. Lin, S.D. Yang, et al., Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477(2020), art. No. 228745. |
| [39] |
Y.J. Zhang, K. Du, Y.B. Cao, et al., Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary particle for alleviating microcracks, J. Power Sources, 477(2020), art. No. 228701. |
/
| 〈 |
|
〉 |