Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting
Daixiang Wei , Wei Wang , Longjin Jiang , Zhidong Chang , Hualei Zhou , Bin Dong , Dekun Gao , Minghui Zhang , Chaofan Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2024, Vol. 31 ›› Issue (2) : 315 -322.
Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting
Lithium recovery from spent lithium-ion batteries (LIBs) have attracted extensive attention due to the skyrocketing price of lithium. The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO2 (LCO) cathodes to overcome the incomplete recovery and loss of lithium during the recycling process. The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO3 under a suitable temperature to control the reduced state of the cobalt oxide. The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium. The results showed that 99.10% of the whole lithium could be recovered as Li2CO3 with a purity of 99.55%. This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
spent LiCoO2 cathodes / medium-temperature carbon reduction / lithium extraction priority / crystal transformation / macroscopic transport resistance
| [1] |
Y.C. Lyu, X. Wu, K. Wang, et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000982. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
J.X. Wang, Q. Zhang, J.Z. Sheng, et al., Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries, Natl. Sci. Rev., 9(2022), No. 8, art. No. nwac097. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Y.Z. Jiang, X.P. Chen, S.X. Yan, S.Z. Li, and T. Zhou, Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry, Chem. Eng. J., 426(2021), art. No. 131637. |
| [23] |
X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater., 389(2020), art. No. 121887. |
| [24] |
Y.F. Zheng, P.H. Shao, L.M. Yang, et al., Gas exchange-driven carbothermal reduction for simultaneous lithium extraction from anode and cathode scraps, Resour. Conserv. Recycl., 188(2023), art. No. 106696. |
| [25] |
Z.M. Yan, A. Sattar, and Z.S. Li, Priority Lithium recovery from spent Li-ion batteries via carbothermal reduction with water leaching, Resour. Conserv. Recycl., 192(2023), art. No. 106937. |
| [26] |
N. Wei, Y.Q. He, G.W. Zhang, et al., Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting, J. Environ. Manage., 329(2023), art. No. 117107. |
| [27] |
R. Morina, D. Merli, P. Mustarelli, and C. Ferrara, Lithium and cobalt recovery from lithium-ion battery waste via functional ionic liquid extraction for effective battery recycling, ChemElectroChem, 10(2023), No. 1, art. No. e202201059. |
| [28] |
|
| [29] |
|
| [30] |
X.P. Chen, Y. Wang, S.Z. Li, Y.Z. Jiang, Y. Cao, and X. Ma, Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry, Chem. Eng. J., 434(2022), art. No. 134542. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
S. Park, S. Jung, D. Kwon, M. Beak, E.E. Kwon, and K. Kwon, Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium, Chem. Eng. J., 435(2022), art. No. 135165. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
R. Hossain, U. Kumar, and V. Sahajwalla, Selective thermal transformation of value added cobalt from spent lithium-ion batteries, J. Cleaner Prod., 293(2021), art. No. 126140. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.M. Steenari, and M. Petranikova, Incineration of EV lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, J. Hazard Mater., 393(2020), art. No. 122372. |
| [48] |
B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. |
| [49] |
|
| [50] |
M.L. Wang, C. Liu, H. Shi, T.Y. Long, C.Y. Zhang, and B. Liu, Facile synthesis of chitosan-derived Maillard reaction productions coated CuFeO2 with abundant oxygen vacancies for higher Fenton-like catalytic performance, Chemosphere, 283(2021), art. No. 131191. |
| [51] |
|
| [52] |
B. Makuza, D.W. Yu, Z. Huang, Q.H. Tian, and X.Y. Guo, Dry grinding-carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals, Resour. Conserv. Recycl., 174(2021;), art. No. 105784. |
/
| 〈 |
|
〉 |