Crystalline framework nanosheets as platforms for functional materials

Yun Fan , Cheng Chen , Siyao Zhang , Suoying Zhang , Fengwei Huo , Weina Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1986 -2005.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1986 -2005. DOI: 10.1007/s12613-023-2696-4
Invited Review

Crystalline framework nanosheets as platforms for functional materials

Author information +
History +
PDF

Abstract

The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nano-materials characterized by unique properties. Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets. Hence, we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review. We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets. Then, two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed: in situ synthesis and post-synthesis modification. Subsequently, we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis, sensing, separation, and energy storage. Finally, we have shared our insights on the challenges of functional crystalline framework nanosheets, hoping to contribute to the knowledge base for optimizing the preparation methods, expanding categories, improving stability, and exploring potential applications.

Keywords

functional materials / crystalline framework nanosheets / in situ synthesis / post-synthesis modification / unique properties

Cite this article

Download citation ▾
Yun Fan, Cheng Chen, Siyao Zhang, Suoying Zhang, Fengwei Huo, Weina Zhang. Crystalline framework nanosheets as platforms for functional materials. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1986-2005 DOI:10.1007/s12613-023-2696-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Seience, 2004, 306(5696): 666.

[2]

Song L, Ci LJ, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209.

[3]

Li MY, Shi YM, Cheng CC, et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science, 2015, 349(6247): 524.

[4]

Nikhil Ji G, Prakash R. Hydrothermal synthesis of Zn–Mg-based layered double hydroxide coatings for the corrosion protection of copper in chloride and hydroxide media. Int. J. Miner. Metall. Mater., 2021, 28(12): 1991.

[5]

Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372.

[6]

Tan CL, Cao XH, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117(9): 6225.

[7]

H. Furukawa, K.E. Cordova, M. O’eeffe, and O.M. Yaghi, The chemistry and applications of metal–organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444.

[8]

Wei T, Zhang ZH, Zhang Q, Lu JH, Xiong QM, Wang FY, Zhou XP, Zhao WJ, Qiu XY. Anion-immobilized solid composite electrolytes based on metal–organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1636.

[9]

Cirujano FG, Martin N, Wee LH. Design of hierarchical architectures in metal-oganic frameworks for catalysis and adsorption. Chem. Mater., 2020, 32(24): 10268.

[10]

Zhong JJ, Qin L, Li JL, Yang Z, Yang K, Zhang MJ. MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors. Int. J. Miner. Metall. Mater., 2022, 29(5): 1061.

[11]

Ding SY, Wang W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev., 2013, 42(2): 548.

[12]

Zhao MT, Wang YX, Ma QL, et al. Ultrathin 2D metal–organic framework nanosheets. Adv. Mater., 2015, 27(45): 7372.

[13]

Li YZ, Fu ZH, Xu G. Metal-organic framework nanosheets: Preparation and applications. Coord. Chem. Rev., 2019, 388, 79.

[14]

Rodriguez-San-Miguel D, Montoro C, Zamora F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev., 2020, 49(8): 2291.

[15]

Ding YJ, Chen YP, Zhang XL, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc., 2017, 139(27): 9136.

[16]

H.L. Song, Y.A. Peng, C.L. Wang, L. Shu, C.Y. Zhu, Y.L. Wang, H.Y. He, and W.S. Yang, Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation, Angew. Chem. Int. Ed., 62(2023), art. No. e202218472.

[17]

Dai FN, Cui XY, Luo YW, et al. Ultrathin MOF nanosheet-based resistive sensors for highly sensitive detection of methanol. Chem. Commun., 2022, 58(82): 11543.

[18]

S.L. Zhao, Y. Wang, J.C. Dong, et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution, Nat. Energy, 1(2016), No. 12, art. No. 16184.

[19]

Liu WB, Li XK, Wang CM, et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc., 2019, 141(43): 17431.

[20]

Biswas S, Dey A, Rahimi FA, Barman S, Maji TK. Metal-free highly stable and crystalline covalent organic nanosheet for visible-light-driven selective solar fuel production in aqueous medium. ACS Catal., 2023, 13(9): 5926.

[21]

Zeng C, Weng W, Lv T, Xiao W. Low-temperature assembly of ultrathin amorphous MnO2 nanosheets over Fe2O3 spindles for enhanced lithium storage. ACS Appl. Mater. Interfaces, 2018, 10(36): 30470.

[22]

Li QH, Qiao XQ, Jia YL, Hou DF, Li DS. nitrophenol reduction, and methylene blue adsorption. ACS Appl. Nano Mater., 2020, 3(1): 68.

[23]

G. Wu, X.S. Zheng, P.X. Cui, et al., A general synthesis approach for amorphous noble metal nanosheets, Nat. Commun., 10(2019), art. No. 4855.

[24]

Hu SS, Yan JJ, Huang XM, et al. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B, 2018, 267, 312.

[25]

Liu XP, Yan ZQ, Zhang Y, et al. Two-dimensional metal–organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano, 2019, 13(5): 5222.

[26]

G.L. Li, J.R. Ye, Y. Shen, Q.L. Fang, and F. Liu, Covalent triazine frameworks composite membrane (CdS/CTF-1) with enhanced photocatalytic in-situ cleaning and disinfection properties for sustainable separation, Chem. Eng. J., 421(2021), art. No. 127784.

[27]

Zhang XY, Lin RJ, Meng XM, Li W, Chen FS, Hou JW. Iron phthalocyanine/two-dimensional metal–organic framework composite nanosheets for enhanced alkaline hydrogen evolution. Inorg. Chem., 2021, 60(13): 9987.

[28]

Qin YT, Wan Y, Guo J, Zhao MT. Two-dimensional metal–organic framework nanosheet composites: Preparations and applications. Chin. Chem. Lett., 2022, 33(2): 693.

[29]

H.Q. Shen, D.D. Shang, L.H. Li, D. Li, and W.D. Shi, Rational design of 2D/2D covalent-organic framework/TiO2 nanosheet heterojunction with boosted photocatalytic H2 evolution, Appl. Surf. Sci., 578(2022), art. No. 152024.

[30]

F. Guo, G.H. Tian, C.B. Fan, Z.A. Zong, J.L. Wang, and J.K. Xu, A zirconium-organic framework nanosheet-based apta-sensor with outstanding electrochemical sensing performance, Inorg. Chem. Commun., 145(2022), art. No. 109970.

[31]

Li Y, Xie MW, Zhang XP, et al. Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sens. Actuators B, 2019, 278, 126.

[32]

Kondo A, Tiew CC, Moriguchi F, Maeda K. Fabrication of metal–organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans., 2013, 42(43): 15267.

[33]

Cai P, Xu M, Meng S-S, et al. Precise spatial-designed metal–organic-framework nanosheets for efficient energy transfer and photocatalysis. Angew. Chem. Int. Ed., 2021, 60(52): 27258.

[34]

Wang MJ, Xu Y, Peng CK, et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal–organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc., 2021, 143(40): 16512.

[35]

Ren JL, Xia ZL, Luo BF, Li D, Shi WD. Fabrication of 2D/2D COF/SnNb2O6 nanosheets and their enhanced solar hydrogen production. Inorg. Chem. Front., 2021, 8(7): 1686.

[36]

Chen HW, Tu HY, Hu CJ, et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc., 2018, 140(3): 896.

[37]

Yang HA, Duan Y, Gu HL, et al. In-situ synthesis strategy of S-doped hierarchical Ni-MOF nanosheet supercapacitor electrodes via nickle foam etching. ACS Appl. Energy Mater., 2023, 6(7): 3789.

[38]

Liu YH, Liu LM, Chen X, Liu Y, Han Y, Cui Y. Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks. J. Am. Chem. Soc., 2021, 143(9): 3509.

[39]

Zhu W, Zhang CF, Li Q, et al. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal., B, 2018, 238, 339.

[40]

Mitra S, Sasmal HS, Kundu T, et al. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc., 2017, 139(12): 4513.

[41]

Zhao YW, Guo LE, Zhang FQ, Yao J, Zhang XM. Turn-on fluorescence enantioselective sensing of hydroxyl carboxylic enantiomers by metal–organic framework nanosheets with a homochiral tetracarboxylate of cyclohexane diamide. ACS Appl. Mater. Interfaces, 2021, 13(17): 20821.

[42]

Tang JP, Liang ZX, Huang MY, et al. A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission. J. Mater. Chem. C, 2021, 9(41): 14628.

[43]

Wu XW, Han X, Xu QS, et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc., 2019, 141(17): 7081.

[44]

Jia W, Wu BH, Sun ST, Wu PY. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res., 2020, 13(11): 2973.

[45]

Guo J, Zhang Y, Zhu YF, et al. Ultrathin chiral metal–organic-framework nanosheets for efficient enantioselective separation. Angew. Chem. Int. Ed., 2018, 57(23): 6873.

[46]

M.L. Luo, Q. Yang, W.B. Yang, et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride-covalent organic framework nanosheet composite, Small, 16(2020), No. 20, art. No. 2001100.

[47]

J. Lu, S. Wang, Y. Zhao, et al., Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions, Catal. Commun., 175(2023), art. No. 106613.

[48]

Liu DY, Zhao ZF, Xu ZK, Li L, Lin SY. Anchoring Ce-modified Ni(OH)2 nanoparticles on Ni-MOF nanosheets to enhances the oxygen evolution performance. Dalton Trans., 2022, 51(34): 12839.

[49]

S.X. Xiong, F.Y. Lv, N.N. Yang, et al., Solvothermal synthesis of donor-acceptor covalent organic framework/coal-based polyaniline composites for three-state electrochromic materials, Sol. Energy Mater. Sol. Cells, 247(2022), art. No. 111969.

[50]

D. Guo, F.W. Ming, D.B. Shinde, et al., Covalent assembly of two-dimensional COF-on-MXene heterostructures enables fast charging lithium hosts, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101194.

[51]

C. Wang, W.Z. Li, Y.H. Jin, J.B. Liu, H. Wang, and Q.Q. Zhang, Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries, Small, 19(2023), art. No. 2300023.

[52]

Deng Z, Yu HJ, Wang L, Liu JY, Shea KJ. Ferrocene-based metal–organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst. J. Mater. Chem. A, 2019, 7(26): 15975.

[53]

H. Zhang, Q.Y. Li, B. Weng, et al., Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation, Chem. Eng. J., 442(2022), art. No. 136144.

[54]

Zhang TT, Song Y, Xing Y, et al. The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for bio-marker detection. Nanoscale, 2019, 11(42): 20221.

[55]

Y. Huang, M.T. Zhao, S.K. Han, et al., Growth of Au nano-particles on 2D metalloporphyrinic metal–organic framework nanosheets used as biomimetic catalysts for cascade reactions, Adv. Mater., 29(2017), No. 32, art. No. 1700102.

[56]

Tian YY, Lu QP, Guo XX, Wang SY, Gao Y, Wang LH. Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for in vitro and intracellular sensing. Nanoscale, 2020, 12(14): 7776.

[57]

K. Rui, G.Q. Zhao, Y.P. Chen, et al., Hybrid 2D dual-metal–organic frameworks for enhanced water oxidation catalysis, Adv. Funct. Mater., 28(2018), No. 26, art. No. 1801554.

[58]

Li YJ, Liu HO, Wang HT, Qiu JS, Zhang XF. GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 eepaaaiion. Chem. Sci., 2018, 9(17): 4132.

[59]

Yang FF, Wu MA, Wang YC, Ashtiani S, Jiang HQ. A GO-induced assembly strategy to repair MOF nanosheet-based membrane for efficient H2/CO2 separation. ACS Appl. Mater. Interfaces, 2019, 11(1): 990.

[60]

Ali Khan N, Yuan JQ, Wu H, et al. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux. ACS Appl. Mater. Interfaces, 2019, 11(32): 28978.

[61]

K. Jayaramulu, D.P. Dubal, A. Schneemann, et al., Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes, Adv. Funct. Mater., 29(2019), No. 38, art. No. 1902539.

[62]

F.C. Tan, L. Zha, and Q. Zhou, Assembly of AIEgen-based fluorescent metal–organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding, Adv. Mater., 34(2022), No. 28, art. No. 2201470.

[63]

Man ZM, Safaei J, Zhang Z, et al. Serosa-mimetic nanoar-chitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc., 2021, 143(39): 16206.

[64]

Ling PH, Qian CH, Gao F, Lei JP. Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide. Chem. Commun., 2018, 54(79): 11176.

[65]

Bi XY, Zhang YA, Zhang F, Zhang SX, Wang ZG, Jin JA. MOF nanosheet-based mixed matrix membranes with metal–organic coordination interfacial interaction for gas separation. ACS Appl. Mater. Interfaces, 2020, 12(43): 49101.

[66]

P. Li, B. He, X.A. Li, Y.F. Lin, and S.K. Tang, Chitosan-linked dual-sulfonate COF nanosheet proton exchange membrane with high robustness and conductivity, Small, 19(2023), No. 35, art. No. 2302060.

[67]

Yao H, Zhang F, Zhang GW, et al. A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chem. Eng. J., 2018, 334, 2547.

[68]

S.Q. Han, W.H. You, S.H. Lv, et al., Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance, Desalination, 548(2023), art. No. 116300.

[69]

Xu LH, Li SH, Mao H, et al. Highly flexible and superhy-drophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Scienee, 2022, 378(6617): 308.

[70]

Peng Y, Li YS, Ban YJ, Yang WS. Two-dimensional metal–organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed., 2017, 56(33): 9757.

[71]

Q. Liu, Z.Q. Guo, C. Wang, et al., A cobalt-based metal–organic framework nanosheet as the electrode for high-performance asymmetric supercapacitor, Adv. Sci., 10(2023), No. 18, art. No. e2207545.

[72]

X.D. Chen, Y.S. Li, L.A. Wang, et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks, Adv. Mater., 31(2019), No. 29, art. No. 1901640.

[73]

Yao N, Jia HN, Fan ZY, et al. Nitridation-induced metal–organic framework nanosheet for enhanced water oxidation electrocatalysis. J. Energy Chem., 2022, 64, 531.

[74]

Li FJ, Jiang MH, Lai CG, Xu HF, Zhang KY, Jin Z. Yttrium- and cerium-codoped ultrathin metal–organic framework nanosheet arrays for high-efficiency electrocatalytic overall water splitting. Nano Lett., 2022, 22(17): 7238.

[75]

B.W. Yang, H.L. Yao, J.C. Yang, C. Chen, and J.L. Shi, Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment, Nat. Commun., 13(2022), art. No. 1988.

[76]

Zou CC, Li QQ, Hua YY, Zhou BH, Duan JG, Jin WQ. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal. ACS Appl. Mater. Interfaces, 2017, 9(34): 29093.

[77]

Tan CX, Yang KW, Dong JQ, et al. Boosting enantioselectivity of chiral organocatalysts with ultrathin two-dimensional metal–organic framework nanosheets. J. Am. Chem. Soc., 2019, 141(44): 17685.

[78]

Wang MH, Hu MY, Liu JM, et al. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron., 2019, 132, 8.

[79]

Ran FT, Xu XQ, Pan D, Liu YY, Bai YP, Shao L. Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device. Nano Micro Lett., 2020, 12(1): 1.

[80]

Y. Wang, L.A. Feng, J.D. Pang, et al., Metal-organic frameworks: Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production, Adv. Sci., 6(2019), No. 11, art. No. 1802059.

[81]

Wang MJ, Zhang N, Feng YG, Hu ZW, Shao Q, Huang XQ. Partially pyrolyzed binary metal–organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem. Int. Ed., 2020, 59(34): 14373.

[82]

Wei RJ, You PY, Duan HY, et al. Ultrathin metal–organic framework nanosheets exhibiting exceptional catalytic activity. J. Am. Chem. Soc., 2022, 144(38): 17487.

[83]

R. Yan, Y. Zhao, H. Yang, et al., Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal–organic framework nanosheets exhibiting highly efficient and size-selective catalysis, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802021.

[84]

J. Lv, W. Li, J. Li, et al., A triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane, Angew. Chem. Int. Ed., 62(2023), art. No. e202217958.

[85]

Y.R. Wang, H.M. Ding, X.Y. Ma, et al., Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework, Angew. Chem. Int. Ed., 61(2022), No. 5, art. No. e202114648.

[86]

Jiao L, Wang JX, Jiang HL. Microenvironment modulation in metal–organic framework-based catalysis. Acc. Mater. Res., 2021, 2(5): 327.

[87]

T. He, B. Ni, S.M. Zhang, et al., Ultrathin 2D zirconium metal–organic framework nanosheets: Preparation and application in photocatalysis, Small, 14(2018), No. 16, art. No. 1703929.

[88]

Rui K, Zhao GQ, Lao MM, et al. Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution. Nano Lett., 2019, 19(12): 8447.

[89]

C. Wang, C. He, Y.H. Luo, et al., Efficient mercury chloride capture by ultrathin 2D metal–organic framework nanosheets, Chem. Eng. J., 379(2020), art. No. 122337.

[90]

Wang YX, Zhao MT, Ping JF, et al. Bioinspired design of ultrathin 2D bimetallic metal–organic-framework nanosheets used as biomimetic enzymes. Adv. Mater., 2016, 28(21): 4149.

[91]

Gutiérrez M, Möslein AF, Tan JC. Facile and fast transformation of nonluminescent to highly luminescent metal–organic frameworks: Acetone sensing for diabetes diagnosis and lead capture from polluted water. ACS Appl. Mater. Interfaces, 2021, 13(6): 7801.

[92]

Qiao YX, Zhang R, He FY, et al. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands. New J. Chem., 2020, 44(41): 17849.

[93]

S.S. Wang, M.M. Wang, C.P. Li, et al., A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers, Sens. Actuators B, 311(2020), art. No. 127919.

[94]

Y. Shu, T. Su, Q. Lu, et al., Paper-based electrochemical immunosensor device via Ni-Co MOF nanosheet as a peroxidase mimic for the label-free detection of alpha-fetoprotein, Sens. Actuators B, 373(2022), art. No. 132736.

[95]

Su FF, Zhang SA, Ji HF, et al. Two-dimensional zirconium-based metal–organic framework nanosheet composites embedded with Au nanoclusters: A highly sensitive electrochemical aptasensor toward detecting cocaine. ACS Sens., 2017, 2(7): 998.

[96]

Chen JQ, Zheng QQ, Xiao SJ, et al. Construction of two-dimensional fluorescent covalent organic framework nanosheets for the detection and removal of nitrophenols. Anal. Chem., 2022, 94(5): 2517.

[97]

Peng YW, Huang Y, Zhu YH, et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc., 2017, 139(25): 8698.

[98]

G.Y. Zhang, Y.X. Ma, H.N. Chai, et al., Porphyrinic metal–organic framework@alumina nanocomposite fluorescent probe: Two-stage stimuli-responsive behavior and phosphate sensing, Sens. Actuators, B, 370(2022), art. No. 132395.

[99]

Xu H, Gao JK, Qian XF, et al. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A, 2016, 4(28): 10900.

[100]

Liu YZ, Ren JX, Wang YJ, et al. A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition. CCS Chem., 2023, 5(9): 2033.

[101]

H.S. Wang, J. Li, J.Y. Li, K. Wang, Y. Ding, and X.H. Xia, Lanthanide-based metal–organic framework nanosheets with unique fluorescence quenching properties for two-color intra-cellular adenosine imaging in living cells, NPG Asia Mater., 9(2017), No. 3, art. No. e354.

[102]

Yan X, Song YP, Liu JM, et al. Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron., 2019, 126, 734.

[103]

Wang GS, Yan ZX, Wang NH, Xiang M, Xu ZH, Zhu HL. Bulk doping nickel-cobalt metal organic framework nanosheet arrays for performance-boosted hybrid super-capacitors. J. Mater. Res., 2022, 37(10): 1714.

[104]

Li JP, Zhao HY, Wang JW, et al. Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery. Nano Energy, 2019, 62, 876.

[105]

Zheng TX, Kang XM, Liu ZL. Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets. Nanoscale, 2021, 13(31): 13273.

[106]

J.S. Yuan, C.J. Zhang, T. Liu, Y.H. Zhen, Z.Z. Pan, and Y.D. Li, Two-dimensional metal–organic framework nanosheets-modified porous separator for non-aqueous redox flow batteries, J. Membr. Sci., 612(2020), art. No. 118463.

[107]

Li Q, Zhou JJ, Liu R, Han L. An amino-functionalized metal–organic framework nanosheet array as a battery-type electrode for an advanced supercapattery. Dalton Trans., 2019, 48(46): 17163.

[108]

J.W. Zhang, Y. Li, M.S. Han, Q.S. Xia, Q.G. Chen, and M.H. Chen, Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor, Mater. Res. Bull., 137(2021), art. No. 111186.

[109]

Hu XH, Jian JH, Fang ZS, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: Fully-exposed porphyrin matters. Energy Storage Mater., 2019, 22, 40.

[110]

J.H. Wang, S. Li, Y.F. Chen, et al., Phthalocyanine based metal–organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li-CO2 battery, Adv. Funct. Mater., 32(2022), No. 49, art. No. 2210259.

[111]

X.L. Liu, Y.C. Jin, H.L. Wang, et al., In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries, Adv. Mater., 34(2022), No. 37, art. No. 2203605.

[112]

C.X. Li, J. Yang, P. Pachfule, et al., Ultralight covalent organic framework/graphene aerogels with hierarchical porosity, Nat. Commun., 11(2020), art. No. 4712.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/