Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution

Xinzhuo Hu , Zhe Liu , Yi Feng , Yongfeng Zhang , Zhe Li , Zhennan Chen , Jing Mao , Jing Yang , Hui Liu , Pengfei Yin , Lei Cui , Xiwen Du

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1906 -1913.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1906 -1913. DOI: 10.1007/s12613-023-2695-5
Article

Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution

Author information +
History +
PDF

Abstract

Commercial hydrogen production involves the development of efficient hydrogen evolution reaction catalysts. Herein, we adopted a friction stir processing (FSP) technique to mix immiscible metals homogenously and obtain a self-supporting copper–silver (CuAg) catalyst. The gust of Ag atoms with larger atomic sizes caused a tensile strain in the Cu matrix. Meanwhile, the chemical-potential difference induced electron transfer from Cu to Ag, and the two factors jointly led to the upshift of Cu d-band and improved the catalytic activity. Consequently, the CuAg electrode exhibited a high turnover frequency (12 times that of pure Cu), a low overpotential at high current density (superior to platinum foil), and high durability (1.57% decay over 180 h). Our work demonstrates that FSP is a powerful method for preparing self-supporting catalysts of immiscible alloys with high catalytic performance.

Keywords

hydrogen evolution reaction / catalyst / friction stir processing / strain / electron transfer

Cite this article

Download citation ▾
Xinzhuo Hu, Zhe Liu, Yi Feng, Yongfeng Zhang, Zhe Li, Zhennan Chen, Jing Mao, Jing Yang, Hui Liu, Pengfei Yin, Lei Cui, Xiwen Du. Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1906-1913 DOI:10.1007/s12613-023-2695-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355(2017), No. 6321, art. No. eaad4998.

[2]

J. Wang, T. Liao, Z.Z. Wei, J.T. Sun, J.J. Guo, and Z.Q. Sun, Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy, Small Methods, 5(2021), No. 4, art. No. 2000988.

[3]

Q.Q. Zhang and J.Q. Guan, Single-atom catalysts for electrocatalytic applications, Adv. Funct. Mater., 30(2020), No. 31, art. No. 2000768.

[4]

X.H. Wu, S. Zhou, Z.Y. Wang, et al., Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater, Adv. Energy Mater., 9(2019), No. 34, art. No. 1901333.

[5]

H.B. Liao, C. Wei, J.X. Wang, et al., A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701129.

[6]

Zhao J, Tran PD, Chen Y, Loo JSC, Barber J, Xu ZJ. Achieving high electrocatalytic efficiency on copper: A low-cost alternative to platinum for hydrogen generation in water. ACS Catal., 2015, 5(7): 4115.

[7]

H.N. Sun, X.M. Xu, H. Kim, W. Jung, W. Zhou, and Z.P. Shao, Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications, Energy Environ. Mater., (2023), art. No. e12441. https://doi.org/10.1002/eem2.12441.

[8]

X.D. He, X. Han, X.Y. Zhou, et al., Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA cm−2, Appl. Catal. B, 331(2023), art. No. 122683.

[9]

Zhou ZY, Li XR, Li Q, Zhao Y, Pang H. Copper-based materials as highly active electrocatalysts for the oxygen evolution reaction. Mater. Today Chem., 2019, 11, 169.

[10]

D. Lukács, L. Szyrwiel, and J.S. Pap, Copper containing molecular systems in electrocatalytic water oxidation—Trends and perspectives, Catalysts, 9(2019), No. 1, art. No. 83.

[11]

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev., 2019, 119(12): 7610.

[12]

Vickers JW, Alfonso D, Kauffman DR. Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technol., 2017, 5(6): 775.

[13]

J.K. Nørskov, T. Bligaard, A. Logadottir, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152(2005), No. 3, art. No. J23.

[14]

Martins PFBD, Lopes PP, Ticianelli EA, Stamenkovic VR, Markovic NM, Strmcnik D. Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity. Electrochem. Commun., 2019, 100, 30.

[15]

S.R. Zhang, L. Nguyen, J.X. Liang, et al., Catalysis on singly dispersed bimetallic sites, Nat. Commun., 6(2015), art. No. 7938.

[16]

Q. Lu, G.S. Hutchings, W.T. Yu, et al., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution, Nat. Commun., 6(2015), art. No. 6567.

[17]

B. Liu, H.Q. Peng, J.Y. Cheng, et al., Nitrogen-doped graphene-encapsulated nickel–copper alloy nanoflower for highly efficient electrochemical hydrogen evolution reaction, Small, 15(2019), No. 48, art. No. 1901545.

[18]

W.C. Sheng, H.A. Gasteiger, and Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes, J. Electrochem. Soc., 157(2010), No. 11, art. No. B1529.

[19]

Li Z, Fu JY, Feng Y, Dong CK, Liu H, Du XW. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal., 2019, 2(12): 1107.

[20]

M.C. Luo and S.J. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2(2017), art. No. 17059.

[21]

Khorshidi A, Violet J, Hashemi J, Peterson AA. How strain can break the scaling relations of catalysis. Nat. Catal., 2018, 1(4): 263.

[22]

W.J. Kang, Y. Feng, Z. Li, et al., Strain - activated copper catalyst for pH - universal hydrogen evolution reaction, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2112367.

[23]

Wu QL, Luo M, Han JH, et al. Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett., 2020, 5(1): 192.

[24]

Yang MY, Jiao L, Dong HL, et al. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci. Bull., 2021, 66(3): 257.

[25]

J.S. Tian, Y.C. Hu, W.F. Lu, et al., Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction, Carbon Energy, (2023), art. No. e322. https://doi.org/10.1002/cey2.322.

[26]

R.F. Zhang, X.F. Kong, H.T. Wang, et al., An informatics guided classification of miscible and immiscible binary alloy systems, Sci. Rep., 7(2017), art. No. 9577.

[27]

Guo SL, Liu SP, Liu JC, Gao ZS, Li DF, Liu ZG. Investigation on strength, ductility and electrical conductivity of Cu–4Ag alloy prepared by cryorolling and subsequent annealing process. J. Mater. Eng. Perform., 2019, 28(11): 6809.

[28]

C.C. Zhao, R.M. Niu, Y. Xin, et al., Improvement of properties in Cu-Ag composites by doping induced microstructural refinement, Mater. Sci. Eng. A, 799(2021), art. No. 140091.

[29]

Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG. Comparison of microstructures and mechanical properties of a Cu–Ag alloy processed using different severe plastic deformation modes. Mater. Sci. Eng. A, 2011, 528(13–14): 4331.

[30]

Li H, Guo CY, Xu CL. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosens. Bioelectron., 2015, 63, 339.

[31]

H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 32(2020), No. 3, art. No. 1806326.

[32]

S. Sultan, J.N. Tiwari, A.N. Singh, et al., Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting, Adv. Energy Mater., 9(2019), No. 22, art. No. 1900624.

[33]

Li J, Zhang J, Shen JK, et al. Self-supported electrocatalysts for the hydrogen evolution reaction. Mater. Chem. Front., 2023, 7(4): 567.

[34]

C.H. Zhang, Z. Xu, N.N. Han, et al., Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer, Sci. Adv., 9(2023), No. 3, art. No. eadd6978.

[35]

Miličić M, Gladović P, Bojanić R, Savković T, Stojić N. Friction stir welding (FSW) process of copper alloys. Metalurgija, 2016, 55(1): 107.

[36]

Cui L, Zhang C, Liu YC, Liu XG, Wang DP, Li HJ. Recent progress in friction stir welding tools used for steels. J. Iron Steel Res. Int., 2018, 25(5): 477.

[37]

Huang Y, Du JL, Wang ZM. Progress in research on the alloying of binary immiscible metals. Acta Metall. Sin., 2020, 56(6): 801.

[38]

Xue P, Huang ZY, Wang BB, et al. Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure. Sci. China Mater., 2016, 59(7): 531.

[39]

Komarasamy M, Mishra RS, Mukherjee S, Young ML. Friction stir-processed thermally stable immiscible nanostructured alloys. JOM, 2015, 67(12): 2820.

[40]

Komarasamy M, Tharp R, Sinha S, Thapliyal S, Mishra R. Hovanski Y, Mishra R, Sato Y, Upadhyay P, Yan D. Achieving forced mixing in Cu-based immiscible alloys via friction stir processing. Friction Stir Welding and Processing X, 2019, Cham, Springer, 199.

[41]

Y. Feng, Z. Li, S. Kang, et al., Mechanically processing copper plate into active catalyst for electrochemical hydrogen production, Acta Mater., 237(2022), art. No. 118164.

[42]

T.T. Yang, C.Q. Cheng, L.Y. Xiao, et al., A descriptor of IB alloy catalysts for hydrogen evolution reaction, SmartMat, (2023), art. No. e1204. https://doi.org/10.1002/smm2.1204.

[43]

Behrooz N, Ghaffarinejad A, Sadeghi N. Ag/Cu nano alloy as an electrocatalyst for hydrogen production. J. Electroanal. Chem., 2016, 782, 1.

[44]

E. Rafiee, M. Farzam, M.A. Golozar, and A. Ashrafi, An investigation on dislocation density in cold-rolled copper using electrochemical impedance spectroscopy, ISRN Corros., 2013(2013), art. No. 921825.

[45]

Xie MH, Ai SQ, Yang J, Yang YD, Chen YH, Jin Y. In-situ generation of oxide nanowire arrays from AgCuZn alloy sulfide with enhanced electrochemical oxygen-evolving performance. ACS Appl. Mater. Interfaces, 2015, 7(31): 17112.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/