Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells

Wan Nor Anasuhah Wan Yusoff , Nurul Akidah Baharuddin , Mahendra Rao Somalu , Andanastuti Muchtar , Nigel P. Brandon , Huiqing Fan

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1933 -1956.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1933 -1956. DOI: 10.1007/s12613-023-2694-6
Invited Review

Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells

Author information +
History +
PDF

Abstract

This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells (S-SOFCs), a relatively new SOFC technology. To this end, this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC, discussing both the selection of materials and the challenges that come with making that choice. This article discussed the relevant factors involved in developing electrodes with nano/microstructure. Nanocomposites, e.g., non-cobalt and lithiated materials, are only a few of the electrode types now being researched. Furthermore, the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure. Insights into the possibilities and difficulties of the material are discussed. To achieve the desired microstructural features, this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process. The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical. This article also provides important and useful recommendations for the strategic design of electrode materials researchers.

Keywords

nano composites / electrode / microstructure tailoring / oxidation / symmetrical solid oxide fuel cell

Cite this article

Download citation ▾
Wan Nor Anasuhah Wan Yusoff, Nurul Akidah Baharuddin, Mahendra Rao Somalu, Andanastuti Muchtar, Nigel P. Brandon, Huiqing Fan. Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1933-1956 DOI:10.1007/s12613-023-2694-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev., 2010, 39(11): 4355.

[2]

Rajalakshmi N, Balaji R, Ramakrishnan S. Recent developments in hydrogen fuel cells: Strengths and weaknesses. Sustainable Fuel Technologies Handbook, 2021, Amsterdam, Elsevier, 431.

[3]

X. Fan, M. Tebyetekerwa, Y. Wu, R.R. Gaddam, and X.S. Zhao, Origin of excellent charge storage properties of defective tin disulphide in magnesium/lithium-ion hybrid batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 177.

[4]

J.A. Delborne, D. Hasala, A. Wigner, and A. Kinchy, Dueling metaphors, fueling futures: “Bridge fuel” visions of coal and natural gas in the United States, Energy Res. Soc. Sci., 61(2020), art. No. 101350.

[5]

Y.J. Yang, Y.H. Yu, J. Li, et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction, Nano Micro Lett., 13(2021), No. 1, art. No. 160.

[6]

Z.W. Cao, R. Momen, S.S. Tao, et al., Metal-organic framework materials for electrochemical supercapacitors, Nano Micro Lett., 14(2022), No. 1, art. No. 181.

[7]

Wendel C H, Kazempoor P, Braun R J. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions. J. Power Sources, 2015, 276, 133.

[8]

X.Y. Huang, L.H. Li, S.F. Zhao, et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production, Nano Micro Lett., 14(2022), No. 1, art. No. 174.

[9]

X.Y. Wang, X.M. Li, H.Q. Fan, and L.T. Ma, Solid electrolyte interface in Zn-based battery systems, Nano Micro Lett., 14(2022), No. 1, art. No. 205.

[10]

Boudghene Stambouli A, Traversa E. Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev., 2002, 6(3): 295.

[11]

Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi AG. Advances in stationary and portable fuel cell applications. Int. J. Hydrogen Energy, 2016, 41(37): 16509.

[12]

H.J. Ying, P.F. Huang, Z. Zhang, et al., Freestanding and flex-dendrite-free aqueous Zn-ion batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 180.

[13]

B. Zhang, Y.Y. Feng, and W. Feng, Azobenzene-based solar thermal fuels: A review, Nano Micro Lett., 14(2022), art. No. 138

[14]

Romdhane J, Louahlia-Gualous H. Energy assessment of PEMFC based MCCHP with absorption chiller for small scale French residential application. Int. J. Hydrogen Energy, 2018, 43(42): 19661.

[15]

Chuang SSC, Zhang L. Perovskites and related mixed oxides for SOFC applications. Perovskites and Related Mixed Oxides, 2015, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 863.

[16]

Ma GS, Zhang D, Guo P, et al. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates. J. Mater. Sci. Technol., 2022, 105, 36.

[17]

Lee SW, Lee B, Baik C, Kim TY, Pak C. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells. J. Mater. Sci. Technol., 2021, 60, 105.

[18]

Tahini HA, Tan X, Zhou W, Zhu ZH, Schwingenschlögl U, Smith SC. Sc and Nb dopants in Sr-CoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes. Energy Storage Mater., 2017, 9, 229.

[19]

Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review. J. Power Sources, 2015, 298, 46.

[20]

Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation—A review. Renew. Sustain. Energy Rev., 2013, 20, 430.

[21]

Li HB, Xu N, Fang YH, Fan H, Lei Z, Han MF. Syngas production via coal char-CO2 fluidized bed gasification and the effect on the performance of LSCFN// LSGM// LSCFN solid oxide fuel cell. J. Mater. Sci. Technol., 2018, 34(2): 403.

[22]

Y.P. Wang, S.H. Liu, H.Y. Zhang, et al., Structured La0.6Sr0.4Co0.2Fe0.8O3–δ cathode with large-scale vertical cracks by atmospheric laminar plasma spraying for IT-SOFCs, J. Alloys Compd., 825(2020), art. No. 153865.

[23]

Mogensen M, Kammer K. Conversion of hydrocarbons in solid oxide fuel cells. Annu. Rev. Mater. Res., 2003, 33(1): 321.

[24]

Fernandes MD, Bistritzki V, Domingues RZ, Matencio T, Rapini M, Sinisterra RD. Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States. Renew. Sustain. Energy Rev., 2020, 127, 109879.

[25]

Huang K, Singhal SC. Cathode-supported tubular solid oxide fuel cell technology: A critical review. J. Power Sources, 2013, 237, 84.

[26]

Javed MS, Shaheen N, Idrees A, Hu CG, Raza R. Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy, 2017, 42(15): 10416.

[27]

Sariboga V, Faruk Öksüzömer MA. Cu–CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics. J. Alloys Compd., 2016, 688, 323.

[28]

Aslannejad H, Barelli L, Babaie A, Bozorgmehri S. Effect of air addition to methane on performance stability and coking over NiO-YSZ anodes of SOFC. Appl. Energy, 2016, 177, 179.

[29]

Kao WX, Lee MC, Chang YC, Lin TN, Wang CH, Chang JC. Fabrication and evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the composite cathode of La0.8Sr0.2MnO3–δ-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3–δ. J. Power Sources, 2010, 195(19): 6468.

[30]

Jais AA, Ali SA, Anwar M, et al. Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane. J. Solid State Electrochem., 2020, 24, 711.

[31]

Venkataramana K, Madhuri C, Madhusudan C, Reddy YS, Bhikshamaiah G, Reddy CV. Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs. Ceram. Int., 2018, 44(6): 6300.

[32]

Peng XZ, Tian YF, Liu Y, et al. A double perovskite decorated carbon-tolerant redox electrode for symmetrical SOFC. Int. J. Hydrogen Energy, 2020, 45(28): 14461.

[33]

L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, and P.R. Slater, Investigation of PO4 3− oxyanion-doping on the properties of CaFe0.4Ti0.6O3–δ for potential application as symmetrical electrodes for SOFCs, J. Alloys Compd., 835(2020), art. No. 155437.

[34]

B.B. Niu, C.L. Lu, W.D. Yi, et al., In-situ growth of nano-particles-decorated double perovskite electrode materials for symmetrical solid oxide cells, Appl. Catal., B, 270(2020), art. No. 118842.

[35]

Fan WW, Sun Z, Bai Y, Wu K, Cheng YH. Highly stable and efficient perovskite ferrite electrode for symmetrical solid oxide fuel cells. ACS Appl. Mater. Interfaces, 2019, 11(26): 23168.

[36]

Lee SH, Lee K, Jang YH, Bae J. Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique. Int. J. Hydrogen Energy, 2017, 42(3): 1648.

[37]

Somalu MR, Muchtar A, Daud WRW, Brandon NP. Screen-printing inks for the fabrication of solid oxide fuel cell films: A review. Renew. Sustain. Energy Rev., 2017, 75, 426.

[38]

Bernadet L, Moncasi C, Torrell M, Tarancón A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes. Int. J. Hydrogen Energy, 2020, 45(28): 14208.

[39]

Zurlo F, Natali Sora I, Felice V, et al. Copper-doped lanthanum ferrites for symmetric SOFCs. Acta Mater., 2016, 112, 77.

[40]

Ruiz-Morales J C, Marrero-López D, Canales-Vázquez J, Irvine J T S. Symmetric and reversible solid oxide fuel cells. RSC Adv., 2011, 1(8): 1403.

[41]

Su C, Wang W, Liu M, Tadé M O, Shao Z. Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Adv. Energy Mater., 2015, 5(14): 1500188.

[42]

X. Chen, J.T. Wang, N. Yu, et al., A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts, J. Membr. Sci., 677(2023), art. No. 121637.

[43]

H.D. Cai, L.L. Zhang, J.S. Xu, et al., Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3–δ electrode for symmetrical SOFC running on H2 and CO fuels, Electrochim. Acta, 320(2019), art. No. 134642.

[44]

Y.R. Yang, S.S. Li, Z.B. Yang, et al., One step synthesis of Sr2Fe1.3Co0.2Mo0.5O6–δ-Gd0.1Ce0.9O2–δ for symmetrical solid oxide fuel cells, J. Electrochem. Soc., 167(2020), No. 8, art. No. 084503.

[45]

Lu YZ, Mushtaq N, Yousaf Shah MAK, et al. Ba0.5Sr0.5Fe0.8Sb0.2O3–δ-m0.2Ce0.8O2–δ bulk heterostructure composite: A cobalt free Oxygen Reduction Electrocatalyst for low-temperature SOFCs. Int. J. Hydrogen Energy, 2022, 47(90): 38348.

[46]

Lu YZ, Li JJ, Ma LG, Lu ZH, Yu L, Cai YX. The development of semiconductor-ionic conductor composite electrolytes for fuel cells with symmetrical electrodes. Int. J. Hydrogen Energy, 2021, 46(15): 9835.

[47]

Y.X. Cao, Z.W. Zhu, Y.J. Zhao, W. Zhao, Z.L. Wei, and T. Liu, Development of tungsten stabilized SrFe0.8W0.2O3–δ material as novel symmetrical electrode for solid oxide fuel cells, J. Power Sources, 455(2020), art. No. 227951.

[48]

Lv HZ, Pan Q, Song Y, Liu XX, Liu TY. A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano Micro Lett., 2020, 12(1): 1.

[49]

Reis JV, Pereira TCP, Teles THA, et al. Synthesis of CeNb3O9 perovskite by pechini method. Mater. Lett., 2018, 227, 261.

[50]

Y.X. Chen, S.L. Luo, J. Leng, et al., Exploring the synthesis conditions and formation mechanisms of Li-rich layered oxides via solid-state method, J. Alloys Compd., 854(2021), art. No. 157204.

[51]

Zhao SQ, Guo ZQ, Yan K, et al. Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Mater., 2021, 34, 716.

[52]

Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, and J. Wang, High-energy batteries: Beyond lithium-ion and their long road to commercialisation, Nanomicro Lett., 14(2022), No. 1, art. No. 94.

[53]

Zhu B, Raza R, Qin HY, Fan LD. Single-component and three-component fuel cells. J. Power Sources, 2011, 196(15): 6362.

[54]

Hu HQ, Lin QZ, Zhu ZG, Zhu B, Liu XR. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2 O2–δ-Li0.3Ni0.6Cu0.07Sr0.03O2–δ layer. J. Power Sources, 2014, 248, 577.

[55]

K. Lin, X.F. Xu, X.Y. Qin, et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode, Nano Micro Lett., 14(2022), art. No. 149.

[56]

Mukherjee P, Faenza NV, Pereira N, et al. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions. Chem. Mater., 2018, 30(23): 8431.

[57]

Gao TP, Wong KW, Ng KM. High-quality LiNi0.8Co0.15Al0.05O2 cathode with excellent structural stability: Suppressed structural degradation and pore defects generation. Nano Energy, 2020, 73, 104798.

[58]

Makimura Y, Zheng SJ, Ikuhara Y, Ukyo Y. Micro-structural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. J. Electrochem. Soc., 2012, 159(7): A1070.

[59]

Bagishev AS, Maslennikov DV, Popov MP, Nemudry AP. A study of the influence of Li-containing additives in microtubular SOFC components based on Gd-doped ceria on the effectiveness of the co-firing method. Mater. Today, 2020, 25, 464.

[60]

J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries, Nano Micro Lett., 14(2022), art. No. 166

[61]

M.H. Yuan, W.J. Dong, L.L. Wei, et al., Stability study of SOFC using layered perovskite oxide La1.85Sr0.15CuO4 mixed with ionic conductor as membrane, Electrochim. Acta, 332(2020), art. No. 135487.

[62]

E. Thauer, G.S. Zakharova, S.A. Wegener, Q. Zhu, and R. Klingeler, Sol-gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries, J. Alloys Compd., 853(2021), art. No. 157364.

[63]

Y.X. Jiang, L.Y. Chai, D.H. Zhang, et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance, Nano Micro Lett., 14(2022), No. 1, art. No. 176.

[64]

Ma DL, Cao ZY, Hu AM. Si-based anode materials for Li-ion batteries: A mini review. Nano Micro Lett., 2014, 6(4): 347.

[65]

Rehman A U, Li MR, Knibbe R, Khan MS, Zhou W, Zhu ZH. Unveiling lithium roles in cobalt-free cathodes for efficient oxygen reduction reaction below 600°C. ChemElectroChem, 2019, 6(20): 5340.

[66]

Zhang XB, Chen G, He Y, Zhang LL, Yang D, Geng SJ. Effect of Li2CO3 and LiOH on the ionic conductivity of BaCe0.9Y0.1O3 electrolyte in SOFCs with a lithium compound electrode. Int. J. Hydrogen Energy, 2021, 46(15): 9948.

[67]

He Y, Chen G, Zhang XB, et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode. ACS Appl. Energy Mater., 2020, 3(5): 4134.

[68]

Fan LD, Su PC. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J. Power Sources, 2016, 306, 369.

[69]

Tan WY, Fan LD, Raza R, Khan MA, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. Int. J. Hydrogen Energy, 2013, 38(1): 370.

[70]

Chen G, Liu HL, He Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J. Mater. Chem. A, 2019, 7(16): 9638.

[71]

Fan WW, Sun Z, Wang JK, Zhou J, Wu K, Cheng YH. Evaluation of Sm0.95Ba0.05Fe0.95Ru0.05O3 as a potential cathode material for solid oxide fuel cells. RSC Adv., 2016, 6(41): 34564.

[72]

Moura CG, Grilo JP d F, Macedo DA, Cesário MR, Fagg DP, Nascimento RM. Cobalt-free perovskite Pr0.5Sr0.5Fe1–xCuxO3–δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells. Mater. Chem. Phys., 2016, 180, 256.

[73]

Huang XB, Feng J, Abdellatif HRS, Zou J, Zhang G, Ni CS. Electrochemical evaluation of double perovskite PrBaCo2–xMnxO5+δ (x = 0, 0.5, 1) as promising cathodes for IT-SOFCs. Int. J. Hydrogen Energy, 2018, 43(18): 8962.

[74]

He YB, Ning F, Yang QH, et al. Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries. J. Power Sources, 2011, 196(23): 10322.

[75]

Liu XQ, Dong WJ, Tong YZ, et al. Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2–δ: Improving cell performance via on-line reaction. Electrochim. Acta, 2019, 295, 325.

[76]

Wang K, Zheng D, Cai HD, et al. Rational design of favourite lithium-ion cathode materials as electrodes for symmetrical solid oxide fuel cells. Ceram. Int., 2021, 47(21): 30536.

[77]

Wang GL, Wu JZ, Li S, et al. Effect of the online reaction byproducts of LiNi0.8Co0.15Al0.05O2–δ electrodes on the performance of solid oxide fuel cells. Int. J. Hydrogen Energy, 2022, 47(79): 33850.

[78]

Luo XF, Wang XY, Liao L, Wang XM, Gamboa S, Sebastian PJ. Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH. J. Power Sources, 2006, 161(1): 601.

[79]

Hu EY, Jiang Z, Fan LD, et al. Junction and energy band on novel semiconductor-based fuel cells. iScience, 2021, 24(3): 102191.

[80]

Baba SM, Ohguri N, Suzuki Y, Murakami K. Evaluation of a variable flow ejector for anode gas circulation in a 50-kW class SOFC. Int. J. Hydrogen Energy, 2020, 45(19): 11297.

[81]

Li P, Yang QY, Zhang H, Yao MX, Yan F, Fu D. Effect of Fe, Ni and Zn dopants in La0.9Sr0.1CoO3 on the electrochemical performance of single-component solid oxide fuel cell. Int. J. Hydrogen Energy, 2020, 45(20): 11802.

[82]

Zheng D, Zhou XM, He ZL, et al. LiNi-oxide simultaneously as electrolyte and symmetrical electrode for low-temperature solid oxide fuel cell. Int. J. Hydrogen Energy, 2022, 47(63): 27177.

[83]

Sandoval MV, Cárdenas C, Capoen E, Pirovano C, Roussel P, Gauthier GH. Performance of La0.5Sr1.5MnOδ Ruddlesden–Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part A. The oxygen reduction reaction. Electrochim. Acta, 2019, 304, 415.

[84]

Chen G, Gao Y, Luo YF, Guo RF. Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte. Ceram. Int., 2017, 43(1): 1304.

[85]

Wang JK, Zhou J, Yang JM, et al. Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden-Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells. Renew. Energy, 2020, 157, 840.

[86]

Zhou J, Wang N, Cui JJ, et al. Structural and electrochemical properties of B-site Ru-doped (La0.8Sr0.2)0.9Sc0.2Mn0.8O3–δ as symmetrical electrodes for reversible solid oxide cells. J. Alloys Compd., 2019, 792, 1132.

[87]

Durán S, Rangel N, Silva C, et al. Study of La4BaCu5–xM-nxO13+δ materials as potential electrode for symmetrical-SOFC. Solid State Ionics, 2019, 341, 115031.

[88]

Yusoff W, Norman NW, Samat A, Somalu MR, Muchtar A, Baharuddin NA. Fabrication process of cathode materials for solid oxide fuel cells. J. Adv. Res. Fluid Mech. Therm. Sci., 2018, 2(2): 153.

[89]

Paydar S, Shariat MH, Javadpour S. Investigation on electrical conductivity of LSM/YSZ8, LSM/Ce0.84Y0.16O0.96 and LSM/Ce0.42Zr0.42Y0.16O0.96 composite cathodes of SOFCs. Int. J. Hydrogen Energy, 2016, 41(48): 23145.

[90]

A. Kudryavtsev, S. Lavrov, A. Shestakova, L. Kulyuk, and E. Mishina, Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference, AIP Adv., 6(2016), art. No. 095306.

[91]

Suescun L, Dabrowski B, Mais J, et al. Oxygen ordered phases in LaxSr1–xMnOy (0≤x≤0.2, 2.5≤y≤3): An in situ neutron powder diffraction study. Chem. Mater., 2008, 20(4): 1636.

[92]

M.V. Sandoval, C. Pirovano, E. Capoen, et al., In-depth study of the Ruddlesden-Popper LaxSr2–xMnO3–δ family as possible electrode materials for symmetrical SOFC, Int. J. Hydrogen Energy, 42(2017), No. 34, art. No. 21930.

[93]

Al Daroukh M, Vashook VV, Ullmann H, Tietz F, Arual Raj I. Oxides of the AMO3 and A2MO4-type: Structural stability, electrical conductivity and thermal expansion. Solid State Ionics, 2003, 158(1–2): 141.

[94]

Lay E, Gauthier G, Dessemond L. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials. Solid State Ionics, 2011, 189(1): 91.

[95]

Gager E, Frye M, McCord DC, Scheffe J, Nino J. Reticulated porous lanthanum strontium manganite structures for solar thermochemical hydrogen production. Int. J. Hydrogen Energy, 2022, 47(73): 31152.

[96]

Z.K. Zhu, M. Sugimoto, U. Pal, S. Gopalan, and S. Basu, Multiple cycle chromium poisoning and in-situ electrochemical cleaning of LSM-based solid oxide fuel cell cathodes, J. Power Sources Adv., 6(2020), art. No. 100037.

[97]

Garcés D, Soldati AL, Troiani H, Montenegro-Hernández A, Caneiro A, Mogni LV. La/Ba-based co-baltites as IT-SOFC cathodes: A discussion about the effect of crystal structure and microstructure on the O2-reduction reaction. Electrochim. Acta, 2016, 215, 637.

[98]

Hardy JS, Coyle CA, Bonnett JF, et al. Evaluation of cation migration in lanthanum strontium cobalt ferrite solid oxide fuel cell cathodes via in-operando X-ray diffraction. J. Mater. Chem. A, 2018, 6(4): 1787.

[99]

Baharuddin NA, Muchtar A, Somalu MR, Samat AA. Thermal decomposition of cobalt free SrFe0.9Ti0.1O3+δ cathode for intermediate temperature solid oxide fuel cell. Procedia Eng., 2016, 148, 72.

[100]

Dong FF, Chen YB, Chen DJ, Shao ZP. Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: A case study of cobalt-free BaFeO3–δ. ACS Appl. Mater. Interfaces, 2014, 6(14): 11180.

[101]

Yang GM, Shen J, Chen YB, Tadé MO, Shao ZP. Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3–δ as a bi-functional electrode material for solid oxide fuel cells. J. Power Sources, 2015, 298, 184.

[102]

Jung W, Tuller HL. A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1–xFexO3–δ mixed conducting oxides-A case study. Adv. Energy Mater., 2011, 1(6): 1184.

[103]

Zamudio-García J, dos Santos-Gómez L, Porras-Vázquez JM, Losilla ER, Marrero-López D. Symmetrical solid oxide fuel cells based on titanate nanocomposite electrodes. J. Eur. Ceram. Soc., 2023, 43(4): 1548.

[104]

X. Chen, C.C. Kou, X.J. Liao, et al., Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions, J. Alloys Compd., 876(2021), art. No. 160212.

[105]

Miao H, Chen B, Wu X, Wang Q, Lin P, Wang J, Yang C, Zhang H, Yuan J. Optimizing strontium titanate anode in solid oxide fuel cells by ytterbium doping. Int. J. Hydrogen Energy, 2019, 44(26): 13728.

[106]

R.P. Li, C. Zhang, J.H. Liu, J.W. Zhou, and L. Xu, A review on the electrical properties of doped SrTiO3 as anode materials for solid oxide fuel cells, Mater. Res. Express, 6(2019), No. 10, art. No. 102006.

[107]

Dogu D, Gunduz S, Meyer KE, Deka DJ, Co AC, Ozkan US. CO2 and H2O electrolysis using solid oxide electrolyzer cell (SOEC) with La and Cl-doped strontium titanate cathode. Catal. Lett., 2019, 149(7): 1743.

[108]

Yatoo MA, Skinner SJ. Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review. Mater. Today, 2022, 56, 3747.

[109]

Ndubuisi A, Abouali S, Singh K, Thangadurai V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J. Mater. Chem. A, 2022, 10(5): 2196.

[110]

Han ZY, Bai JH, Chen X, Zhu XF, Zhou DF. Novel cobalt-free Pr2Ni1–xNbxO4 (x = 0, 0.05, 0.10, and 0.15) per-ovskite as the cathode material for IT-SOFC. Int. J. Hydrogen Energy, 2021, 46(21): 11894.

[111]

Wu N, Wang W, Zhong YJ, Yang GM, Qu JF, Shao ZP. Nickel-iron alloy nanoparticle-decorated K2NiF4-type oxide as an efficient and sulfur-tolerant anode for solid oxide fuel cells. ChemElectroChem, 2017, 4(9): 2378.

[112]

Xu ZQ, Li YH, Wan YH, Zhang SW, Xia CR. Nickel enriched Ruddlesden-Popper type lanthanum strontium manganite as electrode for symmetrical solid oxide fuel cell. J. Power Sources, 2019, 425, 153.

[113]

Zhou SJ, Yang Y, Chen H, Ling YH. in situ exsolved Co-Fe nanoparticles on the Ruddlesden-Popper-type symmetric electrodes for intermediate temperature solid oxide fuel cells. Ceram. Int., 2020, 46(11): 18331.

[114]

Fu L, Zhou J, Yang J, Lian Z, Wang J, Cheng Y, Wu K. Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden–Popper oxide as symmetrical electrode for solid oxide cells. Appl. Surf. Sci., 2020, 511, 145525.

[115]

Y. Wang, X.C. Tang, S. Cao, X. Fang, Z.H. Rong, and X. Chen, A novel method to synthesis titanium dioxide(B)/Anata-se composite oxides by solid-state chemical reaction routes for promoting Li+ insertion, Results Phys., 14(2019), art. No. 102451.

[116]

Pineda OL, Moreno ZL, Roussel P, Swierczek K, Gauthier GH. Synthesis and preliminary study of the double per-ovskite NdBaMn2O5+δ as symmetric SOFC electrode material. Solid State Ionics, 2016, 288, 61.

[117]

Li N, Z, Wei B, et al. Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. J. Alloys Compd., 2008, 454(1–2): 274.

[118]

Chen DJ, Ran R, Zhang K, Wang J, Shao ZP. Intermediate-temperature electrochemical performance of a poly-crystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J. Power Sources, 2009, 188(1): 96.

[119]

Kim G, Wang S, Jacobson AJ, Reimus L, Brodersen P, Mims CA. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem., 2007, 17(24): 2500.

[120]

Ditenberg IA, Smirnov IV, Grinyaev KV, Osipov DA, Gavrilov AI, Korchagin MA. Morphology, structural-phase state and microhardness of a multicomponent non-equiatomic W–Ta–Mo–Nb–Zr–Cr–Ti powders mixture depending on the duration of ball milling. Adv. Powder Technol., 2020, 31(10): 4401.

[121]

A.V. Syugaev, K.A. Yazovskikh, A.A. Shakov, S.F. Lo-mayeva, and A.N. Maratkanova, Molecular transformations in interfaces and liquid media under wet ball milling of iron with N-phenylanthranilic acid, Colloids Surf. A, 608(2021), art. No. 125620.

[122]

H.B. Li, J. He, Q.Q. Sun, and S. Wang, Effect of the environment on the morphology of Ni powder during high-energy ball milling, Mater. Today Commun., 25(2020), art. No. 101288.

[123]

Ponhan K, Tassenberg K, Weston D, Nicholls KGM, Thornton R. Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg–SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling. Ceram. Int., 2020, 46(17): 26956.

[124]

Gong MY, Liu CL, Gao J, Du AZ, Tong WP, Liu CZ. Magnetic and electromagnetic properties of Fe/Fe2–3N composites prepared by high-energy ball milling. J. Mater. Res. Technol., 2020, 9(4): 8646.

[125]

Sivakumar P, Ishak R, Tricoli V. Novel Pt–Ru nano-particles formed by vapour deposition as efficient electrocatalyst for methanol oxidation: Part I. Preparation and physical characterization. Electrochim. Acta, 2005, 50(16–17): 3312.

[126]

Simonenko T L, Simonenko N P, Mokrushin A S, et al. Microstructural, electrophysical and gas-sensing properties of CeO2−Y2O3 thin films obtained by the sol-gel process. Ceram. Int., 2020, 46(1): 121.

[127]

Laysandra H, Triyono D, Liu HL, Rafsanjani RA. Systematic study of phase-formation and lattice structure of La0.9Sr0.1Fe1–xMoxO3 synthesized through the sol–gel method. Ceram. Int., 2020, 46(7): 9751.

[128]

Samat AA, Wan Yusoff WNA, Norman NW, Somalu MR, Osman N. Powder and electrical properties of La0.6Sr0.4CoO3–δg cathode material prepared by a modified sol-gel method for solid oxide fuel cell application. Jurnal Kejuruteraan, 2018, 1(2): 49.

[129]

Badge SK, Deshpande AV. Study of dielectric and ferroelectric properties of Bismuth Titanate (Bi4Ti3O12) ceramic prepared by sol-gel synthesis and solid state reaction method with varying sintering temperature. Solid State Ionics, 2019, 334, 21.

[130]

Mateos D, Valdez B, Castillo JR, et al. Synthesis of high purity nickel oxide by a modified sol-gel method. Ceram. Int., 2019, 45(9): 11403.

[131]

Modan EM, Plăişsu AG. Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. Ann. “Dunarea De Jos” Univ. Galati Fascicle IX Metall. Mater. Sci., 2020, 43(1): 53.

[132]

P.G. Jamkhande, N.W. Ghule, A.H. Bamer, and M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol., 53(2019), art. No. 101174.

[133]

Baharuddin NA, Muchtar A, Somalu MR. Preparation of SrFe0.5Ti0.5O3–δ perovskite-structured ceramic using the glycine-nitrate combustion technique. Mater. Lett., 2017, 194, 197.

[134]

T.H.N.G. Amaraweera, D. Senarathna, and A. Wijayasinghe, Synthesis of Li (Ni1/3Mn1/3Co1/3)O2 by Glycine Nitrate combustion process, Ceylon J. Sci., 45(2016), No. 3, art. No. 21.

[135]

Feng T, Niu BB, Liu JC, He TM. Sr- and Mo-deficiency Sr1.95TiMo1–xO6–δ double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas. Int. J. Hydrogen Energy, 2020, 45(43): 23444.

[136]

Zhao HH, Wang FY, Cui LR, Xu XZ, Han XJ, Du YC. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review. Nano Micro Lett., 2021, 13(1): 1.

[137]

Muhammed Ali SA, Anwar M, Somalu MR, Muchtar A. Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3–δ cathode by microwave-assisted combustion method. Ceram. Int., 2017, 43(5): 4647.

[138]

Xu JH, Wan SB, Wang Y, et al. Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration. Int. J. Hydrogen Energy, 2021, 46(18): 10876.

[139]

S. Vafaeenezhad, N. K. Sandhu, A. R. Hanifi, T. H. Etsell, and P. Sarkar, Development of proton conducting fuel cells using nickel metal support, J. Power Sources, 435(2019), art. No. 226763.

[140]

Wu PP, Tian YT, Z, Zhang X, Ding LL. Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3–δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells. Int. J. Hydrogen Energy, 2022, 47(2): 747.

[141]

Liu QM, Huang SZ, He AJ. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aeroengines. J. Mater. Sci. Technol., 2019, 35(12): 2814.

[142]

Liu Y, Han XQ, Huang Q, et al. Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage. J. Mater. Sci. Technol., 2021, 90, 95.

[143]

Wu TZ, Zhao YQ, Peng RR, Xia CR. Nano-sized Sm0.5Sr0.5CoO3–δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9. Electrochim. Acta, 2009, 54(21): 4888.

[144]

Abdul S, Yusoff W, Baharuddin N, Somalu M, Muchtar A, Osman N. Electrochemical performance of sol-gel derived La0.6S0.4CoO3–δ cathode material for proton-conducting fuel cell: A comparison between simple and advanced cell fabrication techniques. Process. Appl. Ceram., 2018, 12(3): 277.

[145]

Ding LM, Wang LX, Ding D, Zhang SH, Ding XF, Yuan GL. Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3–δ perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Power Sources, 2017, 354, 26.

[146]

Liu XJ, Han D, Wu H, Meng X, Zeng FR, Zhan ZL. Mn1.5Co1.5O4–δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 2013, 38(36): 16563.

[147]

Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ. Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem. Solid State Lett., 2008, 11(9): 167.

[148]

Yue XL, Irvine JTS. Alternative cathode material for CO2Reduction by high temperature solid oxide electrolysis cells. J. Electrochem. Soc., 2012, 159(8): F442.

[149]

Yu YQ, Yu LX, Shao K, et al. BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells. Ceram. Int., 2020, 46(8): 11811.

[150]

Xu J, Zhou XL, Pan L, Wu MX, Sun KN. Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3–δ and CeO2 as an active fuel electrode for reversible solid oxide cells. J. Power Sources, 2017, 371, 1.

[151]

Hossain MK, Chanda R, El-Denglawey A, et al. Recent progress in Barium zirconate proton conductors for electrochemical hydrogen device applications: A review. Ceram. Int., 2021, 47(17): 23725.

[152]

H.F. Lv, L. Lin, X.M. Zhang, et al., Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6–δ via repeated redox manipulations for CO2 electrolysis, Nat. Commun., 12(2021), No. 1, art. No. 5665.

[153]

Kim GS, Lee BY, Accardo G, Ham HC, Moon J, Yoon SP. Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst. J. Power Sources, 2019, 423, 305.

[154]

R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai, Chemically stable proton conducting doped BaCeO3–δ -No more fear to SOFC wastes, Sci. Rep., 3(2013), art. No. 2138.

[155]

D.Q. Liu, Y.N. Dou, T. Xia, et al., B-site La, Ce, and Pr-doped Ba0.5Sr0.5Co0.7Fe0.3O3–δ perovskite cathodes for intermediate-temperature solid oxide fuel cells: Effectively promoted oxygen reduction activity and operating stability, J. Power Sources, 494(2021), art. No. 229778.

[156]

W.N.A.W. Yusoff, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and A.A. Samat, A short review on selection of electrodes materials for symmetrical solid oxide fuel cell, IOP Conf. Ser.: Mater. Sci. Eng., 957(2020), No. 1, art. No. 012049.

[157]

Hołówko B, Blaszczak P, Chlipała M, et al. Structural and catalytic properties of ceria layers doped with transition metals for SOFCs fueled by biogas. Int. J. Hydrogen Energy, 2020, 45(23): 12982.

[158]

Shen MH, Zhang PP. Progress and challenges of cathode contact layer for solid oxide fuel cell. Int. J. Hydrogen Energy, 2020, 45(58): 33876.

[159]

M. V. Sandoval, C. Cardenas, E. Capoen, P. Roussel, C. Pirovano, and G. H. Gauthier, Performance of La0.5Sr1.5MnOδ Ruddlesden–Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part B. the hydrogen oxidation reaction, Electrochim. Acta, 353(2020), art. No. 136494.

[160]

Molin S, Karczewski J, Kamecki B, Mrozinski A, Wang SF, Jasinski P. Processing of Ce0.8Gd0.2O2–δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance. J. Eur. Ceram. Soc., 2020, 40(15): 5626.

[161]

Ramasamy D, Nasani N, Pukazhselvan D, Fagg DP. Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes. Int. J. Hydrogen Energy, 2019, 44(59): 31466.

[162]

Chen XY, Ni WJ, Du XJ, et al. Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing. J. Mater. Sci. Technol., 2019, 35(4): 695.

[163]

W.N.A. Wan Yusoff, N.N.M. Tahir, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and L.J. Wei, Effects of roller speed on the structural and electrochemical properties of LiCo0.6Sr0.4O2 cathode for solid oxide fuel cell application, Sustain. Energy Technol. Assess., 56(2023), art. No. 103096.

[164]

Jasinski P, Molin S, Gazda M, Petrovsky V, Anderson HU. Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication. J. Power Sources, 2009, 194(1): 10.

[165]

Chen M, Luo JL, Chuang KT, Sanger AR. Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating. Electrochim. Acta, 2012, 63, 277.

[166]

Lay E, Dessemond L, Gauthier G. Ba-substituted LSCM anodes for solid oxide fuel cells. J. Power Sources, 2013, 221, 149.

[167]

Rath MK, Ahn BG, Choi BH, Ji MJ, Lee KT. Effects of manganese substitution at the B-site of lanthanum-rich strontium titanate anodes on fuel cell performance and catalytic activity. Ceram. Int., 2013, 39(6): 6343.

[168]

Ruiz-Morales JC, Canales-Vázquez J, Ballesteros-Pérez B, et al. LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. J. Eur. Ceram. Soc., 2007, 27(13–15): 4223.

[169]

Lu J, Yin YM, Li JC, Xu L, Ma ZF. A cobalt-free electrode material La0.5Sr0.5Fe0.8Cu0.2O3–δ for symmetrical solid oxide fuel cells. Electrochem. Commun., 2015, 61, 18.

[170]

Tian YF, Wang WJ, Liu Y, et al. Cobalt-free perovskite oxide Lao6Sr0.4Fe0.8Ni0.2O3–δ as active and robust oxygen electrode for reversible solid oxide cells. ACS Appl. Energy Mater., 2019, 2(5): 3297.

[171]

Sandoval MV, Durán S, Prada A, et al. Synthesis and pre-liminary study of NdxAE2–xMnOδ (AE: Ca, Sr) for symmetrical SOFC electrodes. Solid State Ion., 2018, 317, 194.

[172]

Zhu TL, Fowler DE, Poeppelmeier KR, Han MF, Barnett SA. Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes. J. Electrochem. Soc., 2016, 163(8): F952.

[173]

Yang CH, Yang ZB, Jin C, Xiao GL, Chen FL, Han MF. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater., 2012, 24(11): 1439.

[174]

Shin TH, Okamoto Y, Ida S, Ishihara T. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chem. Eur. J., 2012, 18(37): 11695.

[175]

Y.M. Xu, Z.H. Lin, W. Wei, et al., Recent progress of electrode materials for flexible perovskite solar cells, Nano Micro Lett., 14(2022), art. No. 117

[176]

Luo XY, Yang Y, Yang Y, et al. Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs. Electrochim. Acta, 2018, 260, 121.

[177]

He W, Fan JC, Zhang H, Chen MN, Sun ZM, Ni M. Zr doped BaFeO3–δ as a robust electrode for symmetrical solid oxide fuel cells. Int. J. Hydrogen Energy, 2019, 44(60): 32164.

[178]

Wang S, Wei B, Z. Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0·5Sr0·5Fe0·9W0·1O3–δ electrode for symmetric solid oxide fuel cells. Int. J. Hydrogen Energy, 2021, 46(58): 30101.

[179]

Bilal M, Gao J, Shaheen K, et al. Performance evaluation of highly active and novel La0.7Sr0.3Ti0.1Fe0.6Ni0.3O3–δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell. J. Power Sources, 2020, 472, 228498.

[180]

Tao HL, Xie JJ, Wu YF, Wang SR. Evaluation of PrNi0.4Fe0.6O3–δ as a symmetrical SOFC electrode material. Int. J. Hydrogen Energy, 2018, 43(32): 15423.

[181]

B. Admasu Beshiwork, B. Sirak Teketel, X.Y. Luo, et al., Nanoengineering electrode for yttria-stabilized zirconia-based symmetrical solid oxide fuel cells to achieve superior output performance, Sep. Purif. Technol., 295(2022), art. No. 121174.

[182]

Gu YH, Zhang YL, Zheng YF, Chen H, Ge L, Guo LC. PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Appl. Catal., B, 2019, 257, 117868.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/