Efficient utilization of glass fiber separator for low-cost sodium-ion batteries

Xiaohang Ma , Zhijie Chen , Tianwen Zhang , Xueqian Zhang , Yuan Ma , Yanqing Guo , Yiyong Wei , Mengyuan Ge , Zhiguo Hou , Zhenfa Zi

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1878 -1886.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1878 -1886. DOI: 10.1007/s12613-023-2691-9
Article

Efficient utilization of glass fiber separator for low-cost sodium-ion batteries

Author information +
History +
PDF

Abstract

The separator is a key component of sodium-ion battery, which greatly affects the electrochemical performances and safety characteristics of the battery. Conventional glass fiber separator cannot meet the requirements of large-scale application because of high cost and poor mechanical properties. Herein, the novel composite separators are prepared by a simple slurry sieving process using glass fiber separator scraps and ordinary qualitative filter paper as raw materials. As the composite mass ratio is 1:1, the composite separator has excellent comprehensive properties, including tensile strength of 15.8 MPa, porosity of 74.3%, ionic conductivity of 1.57 × 10−3 S·cm−1 and thermal stability at 210°C. The assembled sodium-ion battery shows superior cycling performance (capacity retention of 94.1% after 500 cycles at 1C) and rate capacity (retention rate of 87.3% at 10C), and it maintains fine interface stability. The above results provide some new ideas for the separator design of high-performance and low-cost sodium-ion batteries.

Keywords

separator / glass fiber / low cost / sodium-ion batteries

Cite this article

Download citation ▾
Xiaohang Ma, Zhijie Chen, Tianwen Zhang, Xueqian Zhang, Yuan Ma, Yanqing Guo, Yiyong Wei, Mengyuan Ge, Zhiguo Hou, Zhenfa Zi. Efficient utilization of glass fiber separator for low-cost sodium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1878-1886 DOI:10.1007/s12613-023-2691-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Yang, S. Xin, L.Q. Mai, and Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000974.

[2]

Abraham KM. How comparable are sodium-ion batteries to lithium-ion counterparts?. ACS Energy Lett., 2020, 5(11): 3544.

[3]

Zhao CL, Wang QD, Yao ZP, et al. Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370(6517): 708.

[4]

L. Xue, X.Q. Shi, B.W. Lin, Q.B. Guo, Y. Zhao, and H. Xia, Self-standing P2/P3 heterostructured Na0.7CoO2 nanosheet arrays as 3D cathodes for flexible sodium-ion batteries, J. Power Sources, 457(2020), art. No. 228059.

[5]

X. Zhou, A.L. Zhao, Z.X. Chen, and Y.L. Cao, Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review, Elentrochem. Commun., 122(2021), art. No. 106897.

[6]

J. Peng, W. Zhang, Q.N. Liu, et al., Prussian blue analogues for sodium-ion batteries: Past, present, and future, Adv. Mater., 34(2022), No. 15, art. No. e2108384.

[7]

L. Xu, H. Li, T. Du, et al., An all Prussian blue analog-based aprotic sodium-ion battery, Battery Energy, 1(2022), No. 2, art. No. 20210003.

[8]

H. Zhang, J. Peng, L. Li, et al., Low-cost zinc substitution of iron-based Prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries, Adv. Funct. Mater., 33(2023), No. 2, art. No. 2210725.

[9]

L. Chen, Z.Q. Zhong, S.B. Ren, and D.M. Han, Carbon-coated Na3V2(PO4)3 supported on multiwalled carbon nanotubes for half-/ full-cell sodium-ion batteries, Energy Technol., 8(2020), No. 3, art. No. 1901080.

[10]

Priyanka V, Savithiri G, Subadevi R, Sivakumar M. An emerging electrochemically active maricite NaMnPO4 as cathode material at elevated temperature for sodium-ion batteries. Appl. Nanosci., 2020, 10(10): 3945.

[11]

Chang W, Zhang XY, Qu J, et al. Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces, 2020, 12(37): 41419.

[12]

Ledwoch D, Robinson JB, Gastol D, et al. Hard carbon composite electrodes for sodium-ion batteries with nano-zeolite and carbon black additives. Batteries Supercaps, 2021, 4(1): 163.

[13]

W. Sun, Q. Sun, R.F. Lu, et al., Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries, J. Alloys Compd., 889(2021), art. No. 161678.

[14]

Y.H. Liu, Q.Z. Liu, C. Jian, et al., Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus, Nat. Commun., 11(2020), art. No. 2520.

[15]

X. Wu, X.X. Lan, R.Z. Hu, Y. Yao, Y. Yu, and M. Zhu, Tin-based anode materials for stable sodium storage: Progress and perspective, Adv. Mater., 34(2022), No. 7, art. No. 2106895.

[16]

Chen H, Xu BB, Ping QS, et al. Co2B2O5 as an anode material with high capacity for sodium ion batteries. Rare Met., 2020, 39(9): 1045.

[17]

H. Qiu, H.Y. Zheng, Y.H. Jin, et al., Mesoporous cubic SnO2-CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries, J. Alloys Compd., 874(2021), art. No. 159967.

[18]

Coustan L, Tarascon JM, Laberty-Robert C. Thin fiber-based separators for high-rate sodium ion batteries. ACS Appl. Energy Mater., 2019, 2(12): 8369.

[19]

Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A. Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics, 2016, 292, 130.

[20]

M.H. Li, G.J. Lu, W.K. Zheng, et al., Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading, Adv. Funct. Mater., 33(2023), No. 26, art. No. 2214759.

[21]

Ansari Y, Guo BK, Cho JH, et al. Low-cost, dendrite-blocking polymer-Sb2O3 separators for lithium and sodium batteries. J. Electrochem. Soc., 2014, 161(10): A1655.

[22]

Zhang LP, Li XL, Yang MR, Chen WH. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater., 2021, 41, 522.

[23]

T.M. Zhu, X.X. Zuo, X.X. Lin, et al., High-wettability composite separator embedded with in situ grown TiO2 nanoparticles for advanced sodium-ion batteries, Energy Technol., 10(2022), No. 10, art. No. 2200409.

[24]

Zhou D, Tang XA, Guo X, et al. Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed., 2020, 59(38): 16725.

[25]

Ma XH, Qiao F, Qian MF, et al. Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries. Scripta Mater., 2021, 190, 153.

[26]

H.C. Gao, B.K. Guo, J. Song, K. Park, and J.B. Goodenough, A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries, Adv. Energy Mater, 5(2015), No. 9, art. No. 1402235.

[27]

J.I. Kim, Y. Choi, K.Y. Chung, and J.H. Park, A structurable gel–polymer electrolyte for sodium ion batteries, Adv. Funct. Mater., 27(2017), No. 34, art. No. 1701768.

[28]

P.C. Ani, P.U. Nzereogu, A.C. Agbogu, F.I. Ezema, and A.C. Nwanya, Cellulose from waste materials for electrochemical energy storage applications: A review, Appl. Surf. Sci. Adv., 11(2022), art. No. 100298.

[29]

J.L. Yang, X.X. Zhao, W. Zhang, et al., Inside back cover: “pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries, Angew. Chem. Int. Ed., 62(2023), No. 15, art. No. 202302568.

[30]

H.Y. Zhou, J. Gu, W.W. Zhang, C.S. Hu, and X.Y. Lin, Rational design of cellulose nanofibrils separator for sodium-ion batteries, Molecules, 26(2021), No. 18, art. No. 5539.

[31]

Zhang TW, Shen B, Yao HB, et al. Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett., 2017, 17(8): 4894.

[32]

Cao CY, Wang HB, Liu WW, Liao XZ, Li L. Nafion membranes as electrolyte and separator for sodium-ion battery. Int. J. Hydrogen Energy, 2014, 39(28): 16110.

[33]

Ho VC, Nguyen BTD, Thi HYN, Kim JF, Mun J. Poly(dopamine) surface-modified polyethylene separator with electrolyte-philic characteristics for enhancing the performance of sodium-ion batteries. Int. J. Energy Res., 2022, 46(4): 5177.

[34]

Y.S. Zhu, F.X. Wang, L.L. Liu, S.Y. Xiao, Y.Q. Yang, and Y.P. Wu, Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries, Sci. Rep., 3(2013), art. No. 3187.

[35]

Zheng JY, Liu XL, Duan YL, et al. Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. J. Membr. Sci., 2019, 583, 163.

[36]

X.H. Ma, Z.H. Zheng, T.W. Zhang, et al., Rational design of glass fiber-cellulose composite separator for sodium-ion batteries, Scripta Mater., 232(2023), art. No. 115481.

[37]

Arunkumar R, Vijaya Kumar Saroja AP, Sundara R. Barium titanate-based porous ceramic flexible membrane as a separator for room-temperature sodium-ion battery. ACS Appl. Mater. Interfaces, 2019, 11(4): 3889.

[38]

S. Janakiraman, A. Agrawal, R. Biswal, and A. Venimadhav, An amorphous polyvinylidene fluoride-co-hexafluoropropylene based gel polymer electrolyte for sodium-ion cells, Appl. Surf. Sci. Adv., 6(2021), art. No. 100139.

[39]

D.N. Lei, Y.B. He, H.J. Huang, et al., Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery, Nat. Commun., 10(2019), No. 1, art. No. 4244.

[40]

N. Mittal, S.A. Tien, E. Lizundia, and M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries, Small, 18(2022), No. 43, art. No. 2107183.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/