Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks

Chaozhi Xiong , Zhenwu Shao , Jia’nan Hong , Kexin Bi , Qingsong Huang , Chong Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2297 -2309.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2297 -2309. DOI: 10.1007/s12613-023-2690-x
Invited Review

Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks

Author information +
History +
PDF

Abstract

This review offers an overview of the latest developments in metal-covalent organic framework (MCOF) and covalent metal-organic framework (CMOF) materials, whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), respectively. With an emphasis on the MCOF and CMOF structures, this review surveys their building blocks and topologies. Specifically, the frameworks are classified based on the dimensions of their components (building blocks), namely, discrete building blocks and one-dimensional infinite building blocks. For the first category, the materials are further divided into collections of two- and three-dimensional networks based on their topologies. For the second category, the recently emerging MCOFs with woven structures are covered. Finally, the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments.

Keywords

metal-covalent organic frameworks / covalent metal-organic frameworks / topology / building block

Cite this article

Download citation ▾
Chaozhi Xiong, Zhenwu Shao, Jia’nan Hong, Kexin Bi, Qingsong Huang, Chong Liu. Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(12): 2297-2309 DOI:10.1007/s12613-023-2690-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C.S. Diercks and O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science, 355(2017), No. 6328, art. No. eaal1585.

[2]

Maurin G, Serre C, Cooper A, Férey G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev., 2017, 46(11): 3104.

[3]

Geng KY, He T, Liu RY, et al. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev., 2020, 120(16): 8814.

[4]

Yuan N, Deng YR, Wang SH, et al. Towards superior lithium-sulfur batteries with metal-organic frameworks and their derivatives. Tungsten, 2022, 4(4): 269.

[5]

Du YX, Zhou YT, Zhu MZ. Co-based MOF derived metal catalysts: From nano-level to atom-level. Tungstet, 2023, 5(2): 201.

[6]

Wei T, Zhang ZH, Zhang Q, et al. Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1636.

[7]

Zhang SY, Xue YC, Zhang YT, et al. KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage. Int. J. Miner. Metall. Mater., 2023, 30(4): 601.

[8]

Lu ZY, He JH, Song MC, et al. Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2. Int. J. Miner. Metall. Mater., 2023, 30(1): 44.

[9]

Wang QY, Liu J, Li YD, Lou ZC, Li YJ. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int. J. Miner. Metall. Mater., 2023, 30(3): 446.

[10]

Gao ZG, Yang K, Zhao ZH, et al. Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective. Int. J. Miner. Metall. Mater., 2023, 30(3): 405.

[11]

Dong JQ, Han X, Liu Y, Li HY, Cui Y. Metal-covalent organic frameworks (MCOFs): A Bridge between metal-organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed., 2020, 59(33): 13722.

[12]

Han WK, Liu Y, Yan XD, Gu ZG. Coordination directed metal covalent organic frameworks. Mater. Chem. Front, 2023, 7, 2995.

[13]

Duan HY, Chen X, Yang YN, et al. Tailoring stability, catalytic activity and selectivity of covalent metal-organic frameworks via steric modification of metal nodes. J. Mater. Chem. A, 2023, 11(24): 12777.

[14]

Han X, Xia QC, Huang JJ, Liu Y, Tan CX, Cui Y. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc., 2017, 139(25): 8693.

[15]

Li LH, Feng XL, Cui XH, Ma YX, Ding SY, Wang W. Salen-based covalent organic framework. J. Am. Chem. Soc., 2017, 139(17): 6042.

[16]

Yang ZF, Hao WJ, Su X, et al. Metallosalphen-based 2D covalent organic frameworks with an unprecedented tju topology via K-shaped two-in-one monomers. Chem. Mater., 2022, 34(13): 5888.

[17]

Liu WB, Li XK, Wang CM, et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc., 2019, 141(43): 17431.

[18]

Qian YY, Li DD, Han YL, Jiang HL. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc., 2020, 142(49): 20763.

[19]

Gong YN, Zhong WH, Li Y, et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc., 2020, 142(39): 16723.

[20]

R.F. Chen, Y. Wang, Y.A. Ma, et al., Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution, Nat. Commun., 12(2021), No. 1, art. No. 1354.

[21]

Wang MC, Ballabio M, Wang M, et al. Unveiling electronic properties in metal-phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J. Am. Chem. Soc., 2019, 141(42): 16810.

[22]

Zhong H, Wang M, Ghorbani-Asl M, et al. Boosting the elec-trocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks. J. Am. Chem. Soc., 2021, 143(47): 19992.

[23]

Lu M, Zhang M, Liu CG, et al. Stable dioxin-linked metal-lophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 educctinn. Ageew. Chem. Int. Ed., 2021, 60(9): 4864.

[24]

Yang SZ, Hu WH, Zhang X, et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc., 2018, 140(44): 14614.

[25]

Wu XW, Han X, Liu YH, Liu Y, Cui Y. Control inter-layer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc., 2018, 140(47): 16124.

[26]

Kaczmarek AM, Liu YY, Kaczmarek MK, et al. Developing luminescent ratiometric thermometers based on a covalent organic framework (COF). Angew. Chem. Int. Ed., 2020, 59(5): 1932.

[27]

Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: From synthetic strategies to diverse applications. Chem. Soc. Rev., 2022, 51(15): 6307.

[28]

O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res., 2008, 41(12): 1782.

[29]

Shevchenko AP, Shabalin AA, Karpukhin IY, Blatov VA. Topological representations of crystal structures: Generation, analysis and implementation in the TopCryst system. Sci. Technol. Adv. Mater.: Methods, 2022, 2(1): 250.

[30]

Nguyen HL, Gándara F, Furukawa H, Doan TLH, Cordova KE, Yaghi OM. A titanium-organic framework as an exemplar of combining the chemistry of metal-and covalent-organic frameworks. J. Am. Chem. Soc., 2016, 138(13): 4330.

[31]

Nguyen HL, Vu TT, Le D, Doan TLH, Nguyen VQ, Phan NTS. A titanium-organic framework: Engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal., 2017, 7(1): 338.

[32]

J.N. Chang, Q. Li, Y. Yan, et al., Covalent-bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo-oxidation biomass valorization, Angew. Chem Int. Ed, 61(2022), No. 37, art. No. e202209289.

[33]

Wei RJ, Zhou HG, Zhang ZY, Ning GH, Li D. Copper (I)-organic frameworks for catalysis: Networking metal clusters with dynamic covalent chemistry. CCS Chem., 2021, 3(7): 2045.

[34]

Wei RJ, You PY, Duan HY, et al. Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity. J. Am. Chem. Soc., 2022, 144(38): 17487.

[35]

J. Luo, X. Luo, M. Xie, et al., Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks, Nat. Commun., 13(2022), No. 1, art. No. 7771.

[36]

Li XM, Wang JY, Xue FF, et al. An imine-linked metal-organic framework as a reactive oxygen species generator. Angew. Chem. Int. Ed., 2021, 60(5): 2534.

[37]

X.X. Wang, X. Ding, Y.C. Jin, et al., Post-nickelation of a crystalline trinuclear copper organic framework for synergistic photocatalytic carbon dioxide conversion, Angew. Chem. Int. Ed., 62(2023), No. 18, art. No. e202302808.

[38]

J. Zhou, J. Li, L. Kan, et al., Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O, Nat. Commun., 13(2022), art. No. 4681.

[39]

Zhao JP, Luo JE, Lin ZH, et al. Chiral copper(i)-organic frameworks for dye degradation and the enantioselective recognition of amino acids. Inorg. Chem. Front., 2022, 9(19): 4907.

[40]

Ke SW, Wang YD, Su JA, et al. Redox-active covalent organic frameworks with nickel-bis(dithiolene) units as guiding layers for high-performance lithium metal batteries. J. Am. Chem. Soc., 2022, 144(18): 8267.

[41]

Zhou HG, Xia RQ, Zheng J, Yuan DQ, Ning GH, Li D. Acid-triggered interlayer sliding of two-dimensional copper(I)-organic frameworks: more metal sites for catalysis. Chem. Sci., 2021, 12(18): 6280.

[42]

L.S. Sun, M. Lu, Z.F. Yang, et al., Nickel glyoximate based metal-covalent organic frameworks for efficient photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 61(2022), No. 30, art. No. e202204326.

[43]

W.K. Han, H.S. Lu, J.X. Fu, et al., Targeted construction of a three-dimensional metal covalent organic framework with spn topology for photocatalytic hydrogen peroxide production, Chem. Eng. J., 449(2022), art. No. 137802.

[44]

Lu HS, Han WK, Yan XD, Chen CJ, Niu TF, Gu ZG. A 3D anionic metal covalent organic framework with soc topology built from an octahedral TiIV complex for photocatalytic reactions. Angew. Chem. Int. Ed., 2021, 60(33): 17881.

[45]

Xu WT, Pei XK, Diercks CS, Lyu H, Ji Z, Yaghi OM. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc., 2019, 141(44): 17522.

[46]

Liu YZ, Ma YH, Zhao YB, et al. Weaving of organic threads into a crystalline covalent organic framework. Science, 2016, 351(6271): 365.

[47]

Zhao YB, Guo L, Gándara F, et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc., 2017, 139(37): 13166.

[48]

Liu YZ, Ma YH, Yang JJ, et al. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J. Am. Chem. Soc., 2018, 140(47): 16015.

[49]

Xu HS, Luo Y, See PZ, et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks (COFs). Angew. Chem. Int. Ed., 2020, 59(28): 11527.

[50]

W.K. Han, Y. Liu, X.D. Yan, Y.Q. Jiang, J.W. Zhang, and Z.G. Gu, Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 61(2022), No. 40, art. No. e202208791.

[51]

Liu Y, Diercks CS, Ma Y, et al. 3D covalent organic frameworks of interlocking 1D square ribbons. J. Am. Chem. Soc., 2019, 141(1): 677.

[52]

Ma TQ, Zhou Y, Diercks CS, et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth., 2023, 2, 286.

[53]

Alezi D, Spanopoulos I, Tsangarakis C, et al. Reticular chemistry at its best: Directed assembly of hexagonal building units into the awaited metal-organic framework with the intricate polybenzene topology, pbz-MOF. J. Am. Chem. Soc., 2016, 138(39): 12767.

[54]

Hong K, Bak W, Chun H. Robust molecular crystals of titanium(IV)-oxo-carboxylate clusters showing water stability and CO2 sorption capability. Inorg. Chem., 2014, 53(14): 7288.

[55]

Zheng J, Lu Z, Wu K, Ning GH, Li D. Coinage-metal-based cyclic trinuclear complexes with metal-metal interactions: Theories to experiments and structures to functions. Chem. Rev., 2020, 120(17): 9675.

[56]

Vasylevs’kyy SI, Senchyk GA, Lysenko AB, et al. 1, 2, 4-triazolyl-carboxylate-based MOFs incorporating triangular Cu(II)-hydroxo clusters: Topological metamorphosis and magnetism. Inorg. Chem., 2014, 53(7): 3642.

[57]

Zhao NA, Yang L, Pan QY, et al. Step-by-step assembly of metal-organic frameworks from trinuclear Cu3 clusters. Inorg. Chem., 2019, 58(1): 199.

[58]

Kong XH, Hu KQ, Huang ZW, et al. Stepwise assembly of a multicomponent heterometallic metal-organic framework via Th6-based metalloligands. Inorg. Chem., 2021, 60(19): 14535.

[59]

Tu BB, Pang QQ, Xu HS, et al. Reversible redox activity in multicomponent metal-organic frameworks constructed from trinuclear copper pyrazolate building blocks. J. Am. Chem. Soc., 2017, 139(23): 7998.

[60]

Wang JH, Li MA, Li D. An exceptionally stable and water-resistant metal-organic framework with hydrophobic nano-spaces for extracting aromatic pollutants from water. Chem. Eur. J., 2014, 20(38): 12004.

[61]

Guan XY, Chen FQ, Fang QR, Qiu SL. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev., 2020, 49(5): 1357.

[62]

Ma TQ, Kapustin EA, Yin SX, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 2018, 361(6397): 48.

[63]

Jiang H, Alezi D, Eddaoudi M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater., 2021, 6(6): 466.

[64]

M. O’Keeffe and O. Delgado-Friedrichs, Reticular Chemistry Structure Resource (RCSR) [2023-03-15]. http://rcsr.anu.edu.au/nets

[65]

Chen ZJ, Jiang H, Li MA, O’Keeffe M, Eddaoudi M. Reticular chemistry 3.2: Typical minimal edge-transitive Derived and Related nets for the design and synthesis of metal-organic frameworks. Chem. Rev., 2020, 120(16): 8039.

[66]

Chen ZJ, Jiang H, O’Keeffe M, Eddaoudi M. Minimal edge-transitive nets for the design and construction of metal-organic frameworks. Faraday Discuss., 2017, 201, 127.

[67]

Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc., 2008, 130(42): 13850.

[68]

Beaudoin D, Maris T, Wuest JD. Constructing mono-crystalline covalent organic networks by polymerization. Nat. Chem., 2013, 5(10): 830.

[69]

T. Song, W.L. Tang, C.E. Bao, et al., An fcu Th-MOF constructed from in situ coupling of monovalent ligands, Symmety, 13(2021), No. 8, art. No. 1332.

[70]

T. Song, X. Feng, C.E. Bao, et al., Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling, Sep. Purif. Technol., 288(2022), art. No. 120700.

[71]

Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.

[72]

Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res., 2010, 43(1): 58.

[73]

Zhou Y, Liu ST, Gu YM, et al. In(III) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithi-olene) ligand for highly selective CO2 electroreduction. J. Am. Chem. Soc., 2021, 143(35): 14071.

[74]

Rosi NL, Kim J, Eddaoudi M, Chen BL, O’Keeffe M, Yaghi OM. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc., 2005, 127(5): 1504.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/