Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode

Jinshan Wang , Feng Li , Si Zhao , Lituo Zheng , Yiyin Huang , Zhensheng Hong

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1868 -1877.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1868 -1877. DOI: 10.1007/s12613-023-2685-7
Article

Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode

Author information +
History +
PDF

Abstract

To meet the low-cost concept advocated by the sodium metal anode, this paper reports the use of a pulsed electrodeposition technology with ionic liquids as electrolytes to achieve uniform nanoplating of metallic magnesium films at around 20 nm on spaced titanium dioxide (TiO2) nanotubes (STNA-Mg). First, the sodiophilic magnesium metal coating can effectively reduce the nucleation overpotential of sodium metal. Moreover, three-dimensional STNA can limit the volume expansion during sodium metal plating and stripping to achieve the ultrastable deposition and stripping of sodium metals with a high Coulombic efficiency of up to 99.5% and a small voltage polarization of 5 mV in symmetric Na∥Na batteries. In addition, the comparative study of sodium metal deposition behavior of STNA-Mg and STNA-Cu prepared by the same route further confirmed the advantage of magnesium metal to guide sodium metal growth. Finally, the prepared STNA-Mg–Na metal anode and commercial sodium vanadium phosphate cathode were assembled into a full cell, delivering a discharge capacity of 110.2 mAh·g−1 with a retention rate of 95.6% after 110 cycles at 1C rate.

Keywords

sodium metal anode / titanium dioxide nanotubes / skeleton / electrodeposition / metallic magnesium coating

Cite this article

Download citation ▾
Jinshan Wang, Feng Li, Si Zhao, Lituo Zheng, Yiyin Huang, Zhensheng Hong. Uniform nanoplating of metallic magnesium film on titanium dioxide nanotubes as a skeleton for reversible Na metal anode. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1868-1877 DOI:10.1007/s12613-023-2685-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T.F. Liu, X.K. Yang, J.W. Nai, et al., Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance, Chem. Eng. J., 409(2021), art. No. 127943.

[2]

B. Sun, P. Xiong, U. Maitra, et al., Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries, Adv. Mater., 32(2020), No. 18, art. No. 1903891.

[3]

C. Delmas, Sodium and sodium-ion batteries: 50 years of research, Adv. Energy Mater., 8(2018), No. 17, art. No. 1703137.

[4]

Feng ZY, Peng WJ, Wang ZX, et al. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater., 2021, 28(10): 1549.

[5]

Wang LF, Wang JY, Wang LY, Zhang MJ, Wang R, Zhan C. A critical review on nickel-based cathodes in rechargeable batteries. Int. J. Miner. Metall. Mater., 2022, 29(5): 925.

[6]

Lee B, Paek E, Mitlin D, Lee SW. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev., 2019, 119(8): 5416.

[7]

Zhao Y, Adair KR, Sun XL. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci., 2018, 11(10): 2673.

[8]

Fan LL, Li XF. Recent advances in effective protection of sodium metal anode. Nano Energy, 2018, 53, 630.

[9]

Z.P. Li, K.J. Zhu, P. Liu, and L.F. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries, Adv. Energy Mater., 12(2022), No. 4, art. No. 2100359.

[10]

W. Liu, P.C. Liu, and D. Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002297.

[11]

Jin F, Wang B, Wang JL, et al. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4(6): 1768.

[12]

H. Kim, M.K. Sadan, C. Kim, et al., Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S batteries by electrochemical activation, Chem. Eng. J., 426(2021), art. No. 130787.

[13]

X.T. Lin, Y.P. Sun, Q. Sun, et al., Reviving anode protection layer in Na-O2 batteries: Failure mechanism and resolving strategy, Adv. Energy Mater., 11(2021), No. 11, art. No. 2003789.

[14]

J.F. Xie, Z. Zhou, and Y.B. Wang, Metal–CO2 batteries at the crossroad to practical energy storage and CO2 recycle, Adv. Funct. Mater., 30(2020), No. 9, art. No. 1908285.

[15]

Q.Y. Guo and Z.J. Zheng, Rational design of binders for stable Li-S and Na-S batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907931.

[16]

X.J. Lai, Z.M. Xu, X.F. Yang, et al., Long cycle life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases, Adv. Energy Mater., 12(2022), No. 10, art. No. 2103540.

[17]

Wang H, Wang CL, Matios E, Li WY. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett., 2017, 17(11): 6808.

[18]

Zheng XY, Bommier C, Luo W, Jiang LH, Hao YN, Huang YH. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater., 2019, 16, 6.

[19]

Wang ZX, Huang ZX, Wang H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano, 2022, 16(6): 9105.

[20]

Xia XM, Lv X, Yao Y, et al. A sodiophilic VN interlayer stabilizing a Na metal anode. Nanoscale Horiz., 2022, 7(8): 899.

[21]

Liang JL, Wu WW, Xu L, Wu XH. Highly stable Na metal anode enabled by a multifunctional hard carbon skeleton. Carbon, 2021, 176, 219.

[22]

Z.W. Sun, Y.D. Ye, J.W. Zhu, et al., Regulating sodium deposition through gradiently-graphitized framework for dendrite-free Na metal anode, Small, 18(2022), No. 18, art. No. 2107199.

[23]

K. Yan, Z.D. Lu, H.W. Lee, et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1(2016), art. No. 16010.

[24]

Ferdousi SA, O’Dell LA, Sun J, Hora Y, Forsyth M, Howlett PC. High-performance cycling of Na metal anodes in phosphonium and pyrrolidinium fluoro(sulfonyl)imide based ionic liquid electrolytes. ACS Appl. Mater. Interfaces, 2022, 14(13): 15784.

[25]

Wei CL, Tan LW, Zhang YC, Wang ZR, Feng JK, Qian YT. Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Mater., 2022, 52, 299.

[26]

L.F. Zhao, Z. Hu, Z.Y. Huang, et al., In situ plating of Mg sodiophilic seeds and evolving sodium fluoride protective layers for superior sodium metal anodes, Adv. Energy Mater., 12(2022), No. 32, art. No. 2200990.

[27]

Shahverdi N, Montazeri A, Khavandi A, Rezaei HR, Saeedi F. Fabrication of nanohydroxyapatite-chitosan coatings by pulse electrodeposition method. J. Inorg. Organomet. Polym. Mater., 2022, 32(12): 4649.

[28]

B.S. Pan, Y.J. Yao, L. Peng, Q.X. Zhang, and Y. Yang, Ultrasound-assisted pulse electrodeposition of cobalt films, Mater. Chem. Phys., 241(2020), art. No. 122395.

[29]

T.A. Green, X. Su, and S. Roy, Pulse electrodeposition of copper in the presence of a corrosion reaction, J. Electrochem. Soc., 168(2021), No. 6, art. No. 062515.

[30]

Cheng BQ, Zhao XJ, Zhang Y, Chen HW, Polmear I, Nie JF. Co-segregation of Mg and Zn atoms at the planar η 1-precipitate/Al matrix interface in an aged Al–Zn–Mg alloy. Scripta. Mater., 2020, 185, 51.

[31]

Davidson R, Verma A, Santos D, et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Mater. Horiz., 2020, 7(3): 843.

[32]

S. Tang, Y.Y. Zhang, X.G. Zhang, et al., Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase, Adv. Mater., 31(2019), No. 16, art. No. 1807495.

[33]

Wan JD, Wang R, Liu ZX, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano, 2023, 17(2): 1610.

[34]

Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. Xia, Heteroatom doping: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/