Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds

Cuiping Li , Gezhong Chen , Zhu’en Ruan , Raimund Bürger , Yuan Gao , Hezi Hou , Hui Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2321 -2333.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2321 -2333. DOI: 10.1007/s12613-023-2680-z
Article

Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds

Author information +
History +
PDF

Abstract

The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study. The influence of variations in the azimuthal angle (θ) and polar angle (φ) of coarse particles on drainage channel structure was analyzed, and the drainage mechanism of the bed was studied. Results showed that water discharge in the bed reduced the size of pores and throat channels, increasing slurry concentration. The throat channel structure was a key component of the drainage process. The φ and θ of particles changed predominantly along the length direction. The changes in φ had a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge. The rake and rod formed a shear ring in the tailings bed with shear, and the θ distribution of particles changed from disorderly to orderly during the rotation process. The drainage channel was squeezed during the shearing process with the change in θ, which broke the channel structure, encouraged water discharge in the bed, and facilitated a further increase in slurry concentration. The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.

Keywords

tailings thickening / coarse particle / azimuthal angle / polar angle / drainage channels

Cite this article

Download citation ▾
Cuiping Li, Gezhong Chen, Zhu’en Ruan, Raimund Bürger, Yuan Gao, Hezi Hou, Hui Wang. Effect of variations in the polar and azimuthal angles of coarse particles on the structure of drainage channels in thickened beds. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(12): 2321-2333 DOI:10.1007/s12613-023-2680-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Spiegel and B. Brown, Heed local impact of coal mining, Nature, 550(2017), No. 7674, art. No. 43.

[2]

A.G. Nazareno and J.R.S. Vitule, Too many mining disasters in Brazil, Nature, 531(2016), No. 7596, art. No. 580.

[3]

Wu D, Zhao RK, Xie CW, Liu S. Effect of curing humidity on performance of cemented paste backfill. Int. J. Miner. Metall. Mater., 2020, 27(8): 1046.

[4]

R. Arjmand, M. Massinaei, and A. Behnamfard, Improving flocculation and dewatering performance of iron tailings thickeners, J. Water Process. Eng., 31(2019), art. No. 100873.

[5]

L.H. Yang, H.J. Wang, A.X. Wu, et al., Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill, Constr. Build. Mater., 247(2020), art. No. 118516.

[6]

Fang K, Fall M. Effects of curing temperature on shear behaviour of cemented paste backfill-rock interface. Int. J. Rock Mech. Min. Sci., 2018, 112, 184.

[7]

Wu AX, Ruan ZE, Wang JD. Rheological behavior of paste in metal mines. Int. J. Miner. Metall. Mater., 2022, 29(4): 717.

[8]

C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.

[9]

Chen QS, Sun SY, Liu YK, Qi CC, Zhou HB, Zhang QL. Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill. Int. J. Miner. Metall. Mater., 2021, 28(9): 1440.

[10]

Tan YY, Yu X, Elmo D, Xu LH, Song WD. Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading. Int. J. Miner. Metall. Mater., 2019, 26(4): 404.

[11]

Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner. Eng., 2015, 70, 20.

[12]

He WP, Nan J, Li HY, Li SN. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow. Water Res., 2012, 46(2): 509.

[13]

Jiao HZ, Chen WL, Wu AX, et al. Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell. Int. J. Miner. Metall. Mater., 2022, 29(12): 2126.

[14]

A. Dubey, A.S. Patra, A.N. Sarkar, et al., Synthesis of a copoly-meric system and its flocculation performance for iron ore tailings, Miner. Eng., 165(2021), art. No. 106848.

[15]

Ruan ZE, Li CP, Shi C. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener. J. Cent. South Univ., 2016, 23(3): 740.

[16]

Wang DL, Zhang QL, Chen QS, Qi CC, Feng Y, Xiao CC. Temperature variation characteristics in flocculation settlement of tailings and its mechanism. Int. J. Miner. Metall. Mater., 2020, 27(11): 1438.

[17]

Pourjavadi A, Fakoorpoor SM, Hosseini SH. Novel cationic-modified salep as an efficient flocculating agent for settling of cement slurries. Carbohydr. Polym., 2013, 93(2): 506.

[18]

Ruan ZE, Wu AX, Wang JD, Yin SH, Wang Y. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length. Chin. J. Eng., 2020, 42(8): 980.

[19]

Sharma S, Lin CL, Miller JD. Multi-scale features including water content of polymer induced kaolinite floc structures. Miner. Eng., 2017, 101, 20.

[20]

MacIver MR, Alizadeh H, Kuppusamy VK, Hamza H, Pawlik M. The macro-structure of quartz flocs. Powder Technol., 2022, 395, 255.

[21]

Ruan ZE, Wu AX, Bürger R, et al. Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry. Powder Technol., 2021, 392, 278.

[22]

Li CP, Chen GZ, Ruan ZE, Hou HZ. Dynamic evolution law of floc structure in whole process of tailings thickening. Chin. J. Nonferrous Metal., 2023, 33(4): 1318.

[23]

A.X. Wu, Z.E. Ruan, R. Bürger, S.H. Yin, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488.

[24]

Bürger R, Diehl S, Farås S, Nopens I, Torfs E. A consistent modelling methodology for secondary settling tanks: A reliable numerical method. Water Sci. Technol., 2013, 68(1): 192.

[25]

Bürger R, Diehl S, Nopens I. A consistent modelling methodology for secondary settling tanks in wastewater treatment. Water Res., 2011, 45(6): 2247.

[26]

Bürger R, Careaga J, Diehl S, Pineda R. A moving-boundary model of reactive settling in wastewater treatment. Part 1: Governing equations. Appl. Math. Model., 2022, 106, 390.

[27]

Langlois JI, Cipriano A. Dynamic modeling and simulation of tailing thickener units for the development of control strategies. Miner. Eng., 2019, 131, 131.

[28]

L.Y. Zhu, W.S. Lyu, P. Yang, and Z.K. Wang, Effect of ultrasound on the flocculation-sedimentation and thickening of unclassified tailings, Ultrason. Sonochem., 66(2020), art. No. 104984.

[29]

Zheng D, Song WD, Tan YY, Cao S, Yang ZL, Sun LJ. Fractal and microscopic quantitative characterization of unclassified tailings flocs. Int. J. Miner. Metall. Mater., 2021, 28(9): 1429.

[30]

Gladman B, de Kretser RG, Rudman M, Scales PJ. Effect of shear on particulate suspension dewatering. Chem. Eng. Res. Des., 2005, 83(7): 933.

[31]

Zbik MS, Smart RStC, Morris GE. Kaolinite flocculation structure. J. Colloid Interface Sci., 2008, 328(1): 73.

[32]

H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Clean. Prod., 245(2020), art. No. 118882.

[33]

H.Z. Jiao, Y.C. Wu, H. Wang, et al., Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043.

[34]

Z.Y. Feng, X.S. Dong, Y.P. Fan, et al., Use of X-ray micro-tomography to quantitatively characterize the pore structure of three-dimensional filter cakes, Miner. Eng., 152(2020), art. No. 106275.

[35]

Z.Y. Feng, Y.P. Fan, X.S. Dong, X.M. Ma, and R.X. Chen, Permeability estimation in filter cake based on X-ray microtomography and Lattice Boltzmann method, Sep. Purif. Technol., 275(2021), art. No. 119114.

[36]

Vrålstad T, Saasen A, Fjær E, Øia T, Ytrehus JD, Khalifeh M. Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency. J. Petrol. Sci. Eng., 2019, 173, 478.

[37]

Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P. Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography. Eur. J. Pharm. Biopharm., 2006, 64(1): 38.

[38]

Yuan XC, Wu LS, Peng QJ. An improved Otsu method using the weighted object variance for defect detection. Appl. Surf. Sci., 2015, 349, 472.

[39]

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern., 1979, 9(1): 62.

[40]

W.N. Yuan and W. Fan, Quantitative study on the microstructure of loess soils at micrometer scale via X-ray computed tomography, Powder Technol., 408(2022), art. No. 117712.

[41]

Ma D, Duan HY, Zhang JX, Liu XW, Li ZH. Numerical simulation of water-silt inrush hazard of fault rock: A three-phase flow model. Rock Mech. Rock Eng., 2022, 55(8): 5163.

[42]

Mishchenko MI. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 2000, 39(6): 1026.

[43]

Bhattacharyya S. Studies of asymmetric particle production in different multiplicity zones in azimuthal space in high energy nucleus-nucleus interactions. Can. J. Phys., 2021, 99(5): 340.

[44]

Ma D, Duan HY, Zhang JX, Bai HB. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines. Int. J. Coal Sci. Technol., 2022, 9(1): 1.

[45]

Greenwood J. The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems. Vacuum, 2002, 67(2): 217.

[46]

L.K. Kinsale, M.A. Kazemi, J.A.W. Elliott, and D.S. Nobes, Transportation and deposition of spherical and irregularly shaped particles flowing through a porous network into a narrow slot, Exp. Therm. Fluid Sci., 109(2019), art. No. 109894.

[47]

T. Börzsönyi, B. Szabó, S. Wegner, et al., Shear-induced alignment and dynamics of elongated granular particles, Phys. Rev. E, 86(2012), No. 5, art. No. 051304.

[48]

N.W. Mueggenburg, Behavior of granular materials under cyclic shear, Phys. Rev. E, 71(2005), No. 3, art. No. 031301.

[49]

S. Behr, U. Vainio, M. Müller, A. Schreyer, and G.A. Schneider, Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation, Sci. Rep., 5(2015), art. No. 9984.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/