Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution

Duanhao Cao , Xiaofeng Ma , Yipeng Zhang , La Ta , Yakun Yang , Chao Xu , Feng Ye , Jianguo Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2432 -2440.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2432 -2440. DOI: 10.1007/s12613-023-2677-7
Article

Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution

Author information +
History +
PDF

Abstract

Exploring and designing a high-performance non-noble metal catalyst for hydrogen evolution reaction (HER) are crucial for the large-scale application of H2 by water electrolysis. Here, novel catalysts with NiMo nanoparticles decorated on reduced graphene oxide (NiMo@rGO) synthesized by a two-step hydrothermal method were reported. Physical characterization results showed that the prepared NiMo@rGO-1 had an irregular lamellar structure, and the NiMo nanoparticles were uniformly dispersed on the rGO. NiMo@rGO-1 exhibited outstanding HER performance in an alkaline environment and required only 93 and 180 mV overpotential for HER in 1.0 M KOH solution to obtain current densities of −10 and −50 mA·cm 2, respectively. Stability tests showed that NiMo@rGO-1 had a certain operating stability for 32 h. Under the same condition, the performance of NiMo@rGO-1 can be comparable with that of commercial Pt/C catalysts at high current density. The synergistic effect between NiMo particles and lamellate graphene can remarkably promote charge transfer in electrocatalytic reactions. As a result, NiMo@rGO-1 presented the advantages of high intrinsic activity, large specific surface area, and small electrical impedance. The lamellar graphene played a role in dispersion to prevent the aggregation of nanoparticles. The prepared NiMo@rGO-1 can be used in an-ion exchange membrane water electrolysis to produce hydrogen. This study provides a simple preparation method for efficient and low-cost water electrolysis to produce hydrogen in the future.

Keywords

hydrogen evolution reaction / NiMo nanocomposite / reduced graphene oxide / synergistic effect

Cite this article

Download citation ▾
Duanhao Cao, Xiaofeng Ma, Yipeng Zhang, La Ta, Yakun Yang, Chao Xu, Feng Ye, Jianguo Liu. Highly dispersed NiMo@rGO nanocomposite catalysts fabricated by a two-step hydrothermal method for hydrogen evolution. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(12): 2432-2440 DOI:10.1007/s12613-023-2677-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Electron. Sci. Technol., 2021, 19(2) art. No. 100080

[2]

Adv. Energy Sustain. Res., 2021, 2(10) art. No. 2100093

[3]

Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels, 2021, 35(20): 16403.

[4]

Ji MD, Wang JL. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energy, 2021, 46(78): 38612.

[5]

Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis - A review. Mater. Sci. Energy Technol., 2019, 2(3): 442.

[6]

K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33(2021), art. No. 100719.

[7]

C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162.

[8]

H.A. Miller, Green hydrogen from anion exchange membrane water electrolysis, Curr. Opin. Electrochem., 36(2022), art. No. 101122.

[9]

Grigoriev SA, Fateev VN, Bessarabov DG, Millet P. Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrogen Energy, 2020, 45(49): 26036.

[10]

S.G. Simoes, J. Catarino, A. Picado, et al., Water availability and water usage solutions for electrolysis in hydrogen production, J. Cleaner Prod., 315(2021), art. No. 128124.

[11]

L.F. Liu, Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis, Curr. Opin. Chem. Eng., 34(2021), art. No. 100743.

[12]

L. Sun, Q.M. Luo, Z.F. Dai, and F. Ma, Material libraries for electrocatalytic overall water splitting, Coord. Chem. Rev., 444(2021), art. No. 214049.

[13]

David M, Ocampo-Martínez C, Sánchez-Peña R. Advances in alkaline water electrolyzers: A review. J. Energy Storage, 2019, 23, 392.

[14]

Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable Sustainable Energy Rev., 2018, 81, 1690.

[15]

J.C. Yang, M.J. Jang, X.J. Zeng, et al., Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review, Electrochem. Commun., 131(2021), art. No. 107118.

[16]

H. Wang, J.K. Xu, J. Xie, C.J. Wang, and P.H. Bai, Hydrogen evolution performance of Ni loading on the carbon-based catalysts, Mater. Chem. Phys., 272(2021), art. No. 125049.

[17]

Xiong TZ, Huang BW, Wei JJ, et al. Unveiling the promotion of accelerated water dissociation kinetics on the hydrogen evolution catalysis of NiMoO4 nanorods. J. Energy Chem., 2022, 67, 805.

[18]

Wang T, Wang XJ, Liu Y, Zheng J, Li XG. A highly efficient and stable biphasic nanocrystalline Ni-Mo-N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy, 2016, 22, 111.

[19]

J.L. Chang, S.Q. Zang, J.Z. Li, et al., Nitrogen-doped porous carbon encapsulated nickel iron alloy nanoparticles, one-step conversion synthesis for application as bifunctional catalyst for water electrolysis, Electrochim. Acta, 389(2021), art. No. 138785.

[20]

Z.N. Wang, J. Lu, S. Ji, et al., Integrating Ni nanoparticles into MoN nanosheets form Schottky heterojunctions to boost its electrochemical performance for water electrolysis, J. Alloys Compd., 867(2021), art. No. 158983.

[21]

J. Zhang, T. Wang, P. Liu, et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics, Nat. Commun., 8(2017), art. No. 15437.

[22]

Xu C, Zhou JB, Zeng M, Fu XL, Liu XJ, Li JM. Electrodeposition mechanism and characterization of Ni-Mo alloy and its electrocatalytic performance for hydrogen evolution. Int. J. Hydrogen Energy, 2016, 41(31): 13341.

[23]

Vidales AG, Omanovic S. Evaluation of nickel-molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media. Electrochim. Acta, 2018, 262, 115.

[24]

Wang LF, Geng MM, Ding XN, et al. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538.

[25]

Wang LY, Wang LF, Wang R, et al. Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1584.

[26]

X.Y. Zhang, W.L. Yu, J. Zhao, B. Dong, C.G. Liu, and Y.M. Chai, Recent development on self-supported transition metalbased catalysts for water electrolysis at large current density, Appl. Mater. Today, 22(2021), art. No. 100913.

[27]

Catalysts, 2018, 8(12) art. No. 614

[28]

Chen X, Shi C, Liang CH. Highly selective catalysts for the hydrogenation of alkynols: A review. Chin. J. Catal., 2021, 42(12): 2105.

[29]

Shetty S, Sadiq MMJ, Bhat DK, Hegde AC. Electrode-position of Ni-Mo-rGO composite electrodes for efficient hydrogen production in an alkaline medium. New J. Chem., 2018, 42(6): 4661.

[30]

S. Korkmaz and I.A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27(2020), art. No. 101038.

[31]

M.T. Safian, K. Umar, and M.N.M. Ibrahim, Synthesis and scalability of graphene and its derivatives: A journey towards sustainable and commercial material, J. Cleaner Prod., 318(2021), art. No. 128603.

[32]

Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8): 4806.

[33]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666.

[34]

Li XT, Duan XG, Han C, et al. Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting. Carbon, 2019, 148, 540.

[35]

Jose PPA, Kala MS, Kalarikkal N, Thomas S. Reduced graphene oxide produced by chemical and hydrothermal methods. Mater. Today Proc., 2018, 5(8): 16306.

[36]

Chanda D, Hnát J, Dobrota AS, Pašti IA, Paidar M, Bouzek K. The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Phys. Chem. Chem. Phys., 2015, 17(40): 26864.

[37]

Feng ZB, Zhang H, Gao B, Lu P, Li DG, Xing PF. Ni-Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis. Int. J. Hydrogen Energy, 2020, 45(38): 19335.

[38]

Gutic SJ, Jovanovic AZ, Dobrota AS, et al. Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: From sol–gel derived powder catalysts to graphene supported co-electrodeposits. Int. J. Hydrogen Energy, 2018, 43(35): 16846.

[39]

Nemiwal M, Zhang TC, Kumar D. Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. Int. J. Hydrogen Energy, 2021, 46(41): 21401.

[40]

L. Wang, M.Y. Gan, L. Ma, et al., One-step preparation of polyaniline-modified three-dimensional multilayer graphene supported PtFeOx for methanol oxidation, Synth. Met., 287(2022), art. No. 117068.

[41]

V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, and A.U. Khan, Graphene synthesis, characterization and its applications: A review, Results Chem., 3(2021), art. No. 100163.

[42]

M. Yusuf, M. Kumar, M.A. Khan, M. Sillanpää, and H. Arafat, A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites, Adv. Colloid Interface Sci., 273(2019), art. No. 102036.

[43]

Small, 2017, 13(41) art. No. 1701648

[44]

Ros C, Murcia-López S, Garcia X, et al. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe bifunctional electrocatalyst for hydrogen and oxygen evolution. ChemSus-Chem, 2021, 14(14): 2872.

[45]

Bau JA, Kozlov SM, Azofra LM, et al. Role of oxidized Mo species on the active surface of Ni-Mo electrocatalysts for hydrogen evolution under alkaline conditions. ACS Catal., 2020, 10(21): 12858.

[46]

Hu SN, Wu HM, Feng CQ, Ding Y. Synthesis of non-noble NiMoO4-Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis. Int. J. Hydrogen Energy, 2020, 45(41): 21040.

[47]

Xue S, Zhang WM, Zhang Q, Du JH, Cheng HM, Ren WC. Heterostructured Ni-Mo-N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. Carbon, 2020, 165, 122.

[48]

X.Y. Luo, H.M. Xiao, J.Y. Li, et al., Cyclic ether on Pt-based carbon support for enhanced alkaline hydrogen evolution, J. Electroanal. Chem., 939(2023), art. No. 117476.

[49]

M.X. Zhao, L.Q. Yang, Z.Y. Cai, H. Guo, and Z.J. Zhao, Design of binder-free hierarchical Mo-Fe-Ni phosphides nanowires array anchored on carbon cloth with high electrocatalytic capability toward hydrogen evolution reaction, J. Alloys Compd., 891(2022), art. No. 162064.

[50]

Venezia AM, La Parola V, Liotta LF. Structural and surface properties of heterogeneous catalysts: Nature of the oxide carrier and supported particle size effects. Catal. Today, 2017, 285, 114.

[51]

Wang LX, Li Y, Xia MR, et al. Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sources, 2017, 347, 220.

[52]

I. Flis-Kabulska and J. Flis, Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis, Mater. Chem. Phys., 241(2020), art. No. 122316.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/