Functionalized carbon dots for corrosion protection: Recent advances and future perspectives
Li Zhao , Jinke Wang , Kai Chen , Jingzhi Yang , Xin Guo , Hongchang Qian , Lingwei Ma , Dawei Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2112 -2133.
Functionalized carbon dots for corrosion protection: Recent advances and future perspectives
Metal corrosion causes significant economic losses, safety issues, and environmental pollution. Hence, its prevention is of immense research interest. Carbon dots (CDs) are a new class of zero-dimensional carbon nanomaterials, which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect, fluorescence, low toxicity, facile chemical modification, and cost-effectiveness. This study provides a comprehensive overview of the synthesis, physical and chemical properties, and anticorrosion mechanisms of functionalized CDs. First, the corrosion inhibition performance of different types of CDs is introduced, followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties. The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior. In addition, diverse functional groups on CDs can interact with Fe3+ and H+ ions generated during the corrosion process; this interaction changes their fluorescence, thereby demonstrating self-reporting behavior. Moreover, challenges and prospects for the development of CD-based corrosion protection systems are also presented.
carbon dots / corrosion protection / corrosion inhibitors / self-healing / self-reporting
| [1] |
|
| [2] |
|
| [3] |
M. Ouakki, M. Galai, and M. Cherkaoui, Imidazole derivatives as efficient and potential class of corrosion inhibitors for metals and alloys in aqueous electrolytes: A review, J. Mol. Liq., 345(2022), art. No. 117815. |
| [4] |
|
| [5] |
J.K. Wang, L.W. Ma, X. Guo, et al., Two birds with one stone: Nanocontainers with synergetic inhibition and corrosion sensing abilities towards intelligent self-healing and self-reporting coating, Chem. Eng. J., 433(2022), art. No. 134515. |
| [6] |
X.M. Xu, H.Y. Wei, M.G. Liu, et al., Nitrogen-doped carbon quantum dots for effective corrosion inhibition of Q235 steel in concentrated sulphuric acid solution, Mater. Today Commun., 29(2021), art. No. 102872. |
| [7] |
|
| [8] |
|
| [9] |
H.Y. Cen, X. Zhang, L. Zhao, Z.Y. Chen, and X.P. Guo, Carbon dots as effective corrosion inhibitor for 5052 aluminium alloy in 0.1 M HCl solution, Corros. Sci., 161(2019), art. No. 108197. |
| [10] |
|
| [11] |
J.K. Wang, L.W. Ma, Y. Huang, et al, Photothermally activated self-healing protective coating based on the “close and seal” dual-action mechanisms, Composites Part B, 231(2022), art. No. 109574. |
| [12] |
S.Y. Zeng, F. Zhang, Y.H. Liu, S.L. Ouyang, Y.W. Ye, and H. Chen, Synthesis of Ce, N co-doped carbon dots as green and effective corrosion inhibitor for copper in acid environment, J. Taiwan. Inst. Chem. Eng., 141(2022), art. No. 104608. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
S.Y. Zheng, L. Feng, Z.Y. Hu, J.N. Li, H.L. Zhu, and X.M. Ma, Study on the corrosion inhibition of biomass carbon quantum dot self-aggregation on Q235 steel in hydrochloric acid, Arab. J. Chem., 16(2023), No. 4, art. No. 104605. |
| [17] |
T.T. Zhang, D.Q. Zhang, P.P. Wu, and L.X. Gao, Corrosion inhibition of high-nitrogen-doped CDs for copper in 3w% NaCl solution, J. Taiwan Inst. Chem. Eng., 138(2022), art. No. 104462. |
| [18] |
|
| [19] |
|
| [20] |
L.W. Ma, C.H. Ren, J.K. Wang, et al., Self-reporting coatings for autonomous detection of coating damage and metal corrosion: A review, Chem. Eng. J., 421(2021), art. No. 127854. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
L.M. Ruan, Y.J. Zhao, Z.H. Chen, et al., Ethylenediamine-as-sisted hydrothermal method to fabricate MoS2 quantum dots in aqueous solution as a fluorescent probe for Fei+ ion detection, Appl. Surf. Sci., 528(2020), art. No. 146811. |
| [28] |
C. Zhu, Y.J. Fu, C.A. Liu, et al., Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers, Adv. Mater., 29(2017), No. 32, art. No. 1701399. |
| [29] |
|
| [30] |
|
| [31] |
J. Zhang, J.B. Wang, J.P. Fu, X.C. Fu, W. Gan, and H.Q. Hao, Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection, J. Nanopart. Res., 20(2018), No. 2, art. No. 41. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
C. Kang, Y. Huang, H. Yang, X.F. Yan, and Z.P. Chen, A review of carbon dots produced from biomass wastes, Nanomaterials, 10(2020), No. 11, art. No. 2316. |
| [40] |
|
| [41] |
Q. Zhang, R. Wang, B. Feng, X. Zhong, and K.K. Ostrikov, Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation, Nat. Commun., 12(2021), No. 1, art. No. 6856. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
T. Atabaev, Doped carbon dots for sensing and bioimaging applications: A minireview, Nanomaterials, 8(2018), No. 5, art. No. 342. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
X.E. Li, J.A. Chu, Y.P. Cheng, F. Yang, and S.X. Xiong, Novel Prussian blue@Carbon-dots hybrid thin film: The impact of carbon-dots on material structure and electrochromic performance, Electrochim. Acta, 355(2020), art. No. 136659. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
B.Y. Wang, J.K. Yu, L.Z. Sui, et al., Rational design of multicolor-emissive carbon dots in a single reaction system by hydrothermal, Adv. Sci., 8(2021), No. 1, art. No. 2001453. |
| [60] |
|
| [61] |
|
| [62] |
Q. Li, Z.L. Bai, X.J. Xi, et al., Rapid microwave-assisted green synthesis of guanine-derived carbon dots for highly selective detection of Ag+ in aqueous solution, Spectrochim. Acta Part A, 248(2021), art. No. 119208. |
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
S.H. Miao, K. Liang, J.J. Zhu, B. Yang, D.Y. Zhao, and B. Kong, Hetero-atom-doped carbon dots: Doping strategies, properties and applications, Nano Today, 33(2020), art. No. 100879. |
| [69] |
W.L. Wei, C. Xu, L. Wu, J.S. Wang, J.S. Ren, and X.G. Qu, Non-enzymatic-browning-reaction: A versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display, Sci. Rep., 4(2014), art. No. 3564. |
| [70] |
|
| [71] |
Y.K. Fu, G.M. Zeng, C. Lai, et al., Hybrid architectures based on noble metals and carbon-based dots nanomaterials: A review of recent progress in synthesis and applications, Chem. Eng. J., 399(2020), art. No. 125743. |
| [72] |
|
| [73] |
J.C. Liu, N. Wang, Y.E. Yu, et al., Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes, Sci. Adv., 3(2017), No. 5, art. No. e1603171. |
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
S.M. Song, J.H. Hu, M.L. Li, X.J. Gong, C. Dong, and S.M. Shuang, Fe3+ and intracellular pH determination based on orange fluorescence carbon dots co-doped with boron, nitrogen and sulfur, Mater. Sci. Eng. C, 118(2021), art. No. 111478. |
| [78] |
M.J. Cui, Y. Yu, and Y.X. Zheng, Effective corrosion inhibition of carbon steel in hydrochloric acid by dopamine-produced carbon dots, Polymers, 13(2021), No. 12, art. No. 1923. |
| [79] |
F.H. Niu, G.G. Zhou, J.W. Zhu, et al., Inhibition behavior of nitrogen-doped carbon dots on X80 carbon steel in acidic solution, J. Mol. Liq., 339(2021), art. No. 117171. |
| [80] |
H.C. Zhao, T.Y. Sun, L.F. Huang, J.Y. Wei, and S.H. Qiu, A green strategy for nitrogen-doped polymer nanodots with high oxygen and chloride corrosion resistance in extremely acidic condition, Chem. Eng. J., 437(2022), art. No. 135242. |
| [81] |
Y.J. Qiang, S.T. Zhang, H.C. Zhao, B.C. Tan, and L.P. Wang, Enhanced anticorrosion performance of copper by novel N-doped carbon dots, Corros. Sci., 161(2019), art. No. 108193. |
| [82] |
Y.W. Ye, D.P. Yang, H. Chen, et al., A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment, J. Hazard. Mater., 381(2020), art. No. 121019. |
| [83] |
Z.X. Liu, Y.W. Ye, and H. Chen, Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment, J. Clean. Prod., 270(2020), art. No. 122458. |
| [84] |
|
| [85] |
|
| [86] |
V. Saraswat and M. Yadav, Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor, Colloids Surf. A, 627(2021), art. No. 127172. |
| [87] |
|
| [88] |
|
| [89] |
Y.X. Zeng, L. Kang, Y. Wu, et al., Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution, J. Mol. Liq., 349(2022), art. No. 118108. |
| [90] |
Y.W. Ye, Y.J. Zou, Z.L. Jiang, et al., An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution, J. Alloys Compd., 815(2020), art. No. 152338. |
| [91] |
|
| [92] |
Y.W. Ye, D.W. Zhang, Y.J. Zou, H.C. Zhao, and H. Chen, A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor, J. Cleaner Prod., 264(2020), art. No. 121682. |
| [93] |
M.Y. Zhu, Z.Y. He, L. Guo, et al., Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation, J. Mol. Liq., 342(2021), art. No. 117583. |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
Y. Zhang, B.C. Tan, X. Zhang, L. Guo, and S.T. Zhang, Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution, J. Mol. Liq., 338(2021), art. No. 116702. |
| [99] |
|
| [100] |
Z. Liu, X. Hao, Y. Li, and X.H. Zhang, Novel Ce@N-CDs as green corrosion inhibitor for metal in acidic environment, J. Mol. Liq., 349(2022), art. No. 118155. |
| [101] |
|
| [102] |
C. Verma, A. Alfantazi, and M.A. Quraishi, Quantum dots as ecofriendly and aqueous phase substitutes of carbon family for traditional corrosion inhibitors: A perspective, J. Mol. Liq., 343(2021), art. No. 117648. |
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
F. Anindita, N. Darmawan, and Z.A. Mas’ud, Fluorescence carbon dots from durian as an eco-friendly inhibitor for copper corrosion, [in] AIP Conference Proceedings, Geneva, 2018, p. 020008. |
| [107] |
|
| [108] |
S.Y. Cao, D. Liu, T.X. Wang, et al., Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium, Colloids Surf. A, 616(2021), art. No. 126280. |
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
L.W. Ma, J.K. Wang, Y.J. Wang, et al., Enhanced active corrosion protection coatings for aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers, Corros. Sci., 208(2022), art. No. 110663. |
| [114] |
|
| [115] |
B. Ali Al Jahdaly, M.F. Elsadek, B.M. Ahmed, M.F. Farahat, M.M. Taher, and A.M. Khalil, Outstanding graphene quantum dots from carbon source for biomedical and corrosion inhibition applications: A review, Sustainability, 13(2021), No. 4, art. No. 2127. |
| [116] |
Z. Chen, M. Wang, A.A. Fadhil, et al., Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution, Colloids Surf. A, 627(2021), art. No. 127209. |
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
V. Saraswat, R. Kumari, and M. Yadav, Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies, J. Phys. Chem. Solids, 160(2022), art. No. 110341. |
| [121] |
|
| [122] |
|
| [123] |
J.H. Ding, H.R. Zhao, and H.B. Yu, Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings, Chem. Eng. J., 430(2022), art. No. 132838. |
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
D. Xu, Q.L. Lin, and H. Chang, Recent advances and sensing applications of carbon dots, Small Methods, 4(2020), No. 4, art. No. 1900387. |
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
Q.L. Wen, Z.F. Pu, Y.J. Yang, et al., Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid, Microchem. J., 159(2020), art. No. 105364. |
| [132] |
Q.X. An, Q.L. Lin, X.H. Huang, et al., Electrochemical synthesis of carbon dots with a Stokes shift of 309 nm for sensing of Fe3+ and ascorbic acid, Dyes Pigm., 185(2021), art. No. 108878. |
| [133] |
Z. Liu, R.N. Jia, Y. Jian, et al., N-doped carbon dots as a multifunctional platform for real-time corrosion monitoring and inhibition, Colloids Surf. A, 650(2022), art. No. 129499. |
| [134] |
S.H. Wu, J.K. Wang, T. Liu, X. Guo, and L.W. Ma, Sulfosalicylic acid modified carbon dots as effective corrosion inhibitor and fluorescent corrosion indicator for carbon steel in HCl solution, Colloids Surf. A, 661(2023), art. No. 130951. |
| [135] |
|
| [136] |
|
| [137] |
Y.Z. Fu, S.J. Zhao, S.L. Wu, et al., A carbon dots-based fluorescent probe for turn-on sensing of ampicillin, Dyes Pigm., 172(2020), art. No. 107846. |
| [138] |
|
| [139] |
Z.Y. Zhang, X.Y. Chen, and J.L. Wang, Bright blue emissions N-doped carbon dots from a single precursor and their application in the trace detection of Fe3+ and F−, Inorg. Chim. Acta, 515(2021), art. No. 120087. |
| [140] |
|
| [141] |
|
| [142] |
J.J. Wang, T. Wei, F. Ma, T.D. Li, and Q.F. Niu, A novel fluorescent and colorimetric dual-channel sensor for the fast, reversible and simultaneous detection of Fe3+ and Cu2+ based on terthiophene derivative with high sensitivity and selectivity, J. Photochem. Photobiol. A, 383(2019), art. No. 111982. |
| [143] |
|
| [144] |
|
| [145] |
Z.Z. Nan, C.C. Hao, X.G. Zhang, H.Y. Liu, and R.G. Sun, Carbon quantum dots (CQDs) modified ZnO/CdS nanoparticles based fluorescence sensor for highly selective and sensitive detection of Fe(III), Spectrochim. Acta Part A, 228(2020), art. No. 117717. |
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
F.K. Du, J.S. Xu, F. Zeng, and S.Z. Wu, Preparation of a multifunctional nano-carrier system based on carbon dots with pH-triggered drug release, Acta Chim. Sinica, 74(2016), No. 3, art. No. 241. |
| [158] |
|
| [159] |
L. Li, L.H. Shi, J. Jia, et al., Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism, Sens. Actuators B, 332(2021), art. No. 129513. |
| [160] |
|
/
| 〈 |
|
〉 |