Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects

Min Zhou , Laijun Liang , Dingze Lu , Xiaomei Lu , Zheng Wang , Fengzhen Huang , Pengfei Cheng , Dongdong Liu , Mengqi Tian , Qiuping Wang , Yunjie Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2044 -2054.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2044 -2054. DOI: 10.1007/s12613-023-2671-0
Article

Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects

Author information +
History +
PDF

Abstract

Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology. However, the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration–electricity conversion ability. Herein, this work reports the (K0.52Na0.48)NbO3 ferroelectric ceramics (KNNFCx), for which the FeCo modification strategy is proposed. The substitution of the moderate amount of FeCo (x = 0.015) at Nb site not only optimizes ferroelectricity but also produces beneficial defects, notably increasing Rhodamine B water purification efficiency to 95%. The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce non-radiative recombination. Importantly, the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy. Therefore, ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance.

Keywords

piezocatalytic / water purification / ferroelectric polarization / beneficial defects

Cite this article

Download citation ▾
Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, Yunjie Zhang. Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 2044-2054 DOI:10.1007/s12613-023-2671-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu CY, Tan MX, Li Y, et al. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci., 2021, 596, 288.

[2]

Wu JM, Chang WE, Chang YT, Chang CK. Piezocatalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv. Mater., 2016, 28(19): 3718.

[3]

Y. Zhang, H. Khanbareh, S. Dunn, et al., High efficiency water splitting using ultrasound coupled to a BaTiO3 nanofluid, Adv. Sci., 9(2022), No. 9, art. No. e2105248.

[4]

Li S, Zhao ZC, Zhao JZ, Zhang ZT, Li X, Zhang JM. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater., 2020, 3(2): 1063.

[5]

Zhao LL, Zhang Y, Wang FL, et al. BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization. Nano Energy, 2017, 39, 461.

[6]

Mohapatra H, Kleiman M, Esser-Kahn AP. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem., 2017, 9(2): 135.

[7]

A.W. Morawski, K. Ćmielewska, E. Ekiert, et al., Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor, Chem. Eng. J., 446(2022), art. No. 137030.

[8]

Oener SZ, Foster MJ, Boettcher SW. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science, 2020, 369(6507): 1099.

[9]

Yuan BW, Wu J, Qin N, Lin EZ, Kang ZH, Bao DH. Sm-doped Pb(Mg1/3Nb2/3)O3xPbTiO3 piezocatalyst: Exploring the relationship between piezoelectric property and piezocatalytic activity. Appl. Mater. Today, 2019, 17, 183.

[10]

H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, and H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers, Appl. Phys. Lett., 104(2014), No. 16, art. No. 162907.

[11]

Wu J, Qin N, Bao DH. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy, 2018, 45, 44.

[12]

Wu J, Qin N, Yuan BW, Lin EZ, Bao DH. Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment. ACS Appl. Mater. Interfaces, 2018, 10(44): 37963.

[13]

Wu JA, Xu Q, Lin EZ, et al. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces, 2018, 10(21): 17842.

[14]

Wang K, Yao FZ, Jo W, et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater., 2013, 23(33): 4079.

[15]

T.L. Zhao, A.A. Bokov, J.G. Wu, et al., Giant piezoelectricity of ternary perovskite ceramics at high temperatures, Adv. Funct. Mater., 29(2019), No. 12, art. No. 1807920.

[16]

F. Wu, Y.H. Yu, H.A. Yang, et al., Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system, Adv. Mater., 29(2017), No. 28, art. No. 1701432.

[17]

B. Yang, H.B. Chen, Y.D. Yang, et al., Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation, Chem. Eng. J., 416(2021), art. No. 128986.

[18]

L.M. Tan, Q. Sun, and Y.Y. Wang, Outstanding piezoelectric properties of Al-substituted potassium–sodium niobate-based lead-free piezoceramics, J. Alloys Compd., 836(2020), art. No. 155419.

[19]

Wang XC, Meng C, Wang YY. Insight for the construction of R–T phase boundary in KNN piezoceramics from the view of energy band structure and electron density. Ceram. Int., 2021, 47(20): 28500.

[20]

A. Zhang, Z.Y. Liu, B. Xie, et al., Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst, Appl. Catal. B, 279(2020), art. No. 119353.

[21]

F.Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, and J.F. Li, Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics, Appl. Phys. Lett., 104(2014), No. 24, art. No. 242912.

[22]

Zhou M, Lu XM, Yang DY, et al. Induced core–shell structure and the electric properties of (K0.48Na0.52)0.95Li0.05Nb 0.95Sb0.05O3 ceramics. Phys. Chem. Chem. Phys., 2017, 19(3): 1868.

[23]

K. Wang, J.F. Li, and N. Liu, Piezoelectric properties of low-temperature sintered Li-modified (Na,K)NbO3 lead-free ceramics, Appl. Phys. Lett., 93(2008), No. 9, art. No. 092904.

[24]

Kong J, Li LL, Liu JE, Marlton FP, Jørgensen MRV, Pramanick A. A local atomic mechanism for monoclinic–tetragonal phase boundary creation in Li-doped Na0.5K0.5NbO3 ferroelectric solid solution. Inorg. Chem., 2022, 61(10): 4335.

[25]

H.J. Yu, F. Chen, X.W. Li, et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction, Nat. Commun., 12(2021), art. No. 4594.

[26]

Mgbemere HE, Hinterstein M, Schneider GA. Structural phase transitions and electrical properties of (KxNa1−x)NbO3-based ceramics modified with Mn. J. Eur. Ceram. Soc., 2012, 32(16): 4341.

[27]

Rafiq MA, Costa ME, Tkach A, Vilarinho PM. Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: A comparison study. Cryst. Growth Des., 2015, 15(3): 1289.

[28]

M. Zhou, X.M. Lu, L. Liu, et al., Room temperature multiferroic properties and polymorphic phase transition-induced noticeable magnetodielectric anomalies in Fe/Co co-doped (K0.52Na0.48)NbO3 ceramics, J. Alloys Compd., 836(2020), art. No. 155519.

[29]

Ewe LS, Abd-Shukor R. Electrical transport properties of Pr1−xSrxMnO3(x = 0 to 0.45). Adv. Appl. Ceram., 2010, 109(7): 426.

[30]

Zhou M, Lu XM, Xu XY, et al. Room temperature multiferroic behavior and magnetoelectric coupling in (K,Na)NbO3-based ceramics. Ceram. Int., 2018, 44(12): 14169.

[31]

Kumar A, Baker JN, Bowes PC, et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater., 2021, 20(1): 62.

[32]

B. Zhang, D. Lu, Z. Wang, et al., Highly efficient photocatalytic hydrogen production performance for 2D/0D g-C3N4/Zn0.5Cd0.5S with g-C3N4 as a transport medium for photo-generated charge carriers, J. Electrochem. Soc., 169(2022), No. 4, art. No. 046512.

[33]

X.E. Ning, A.Z. Hao, Y.L. Cao, N. Lv, and D.Z. Jia, Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy, Appl. Surf. Sci., 566(2021), art. No. 150730.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/