Progress and prospects of mining with backfill in metal mines in China
Gaili Xue , Erol Yilmaz , Yongding Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (8) : 1455 -1473.
Progress and prospects of mining with backfill in metal mines in China
Mining is the foundation of modern industrial development. In the context of the “carbon peaking and carbon neutrality” era, countries have put forward the development strategy of “adhering to the harmonious coexistence of humans and nature.” The ongoing progress and improvement of filling mining technology have provided significant advantages, such as “green mining, safe, efficient, and low-carbon emission,” which is crucial to the comprehensive utilization of mining solid waste, environmental protection, and safety of re-mining. This review paper describes the development history of metal mine filling mining in China and the characteristics of each stage. The excitation mechanism and current research status of producing cementitious materials from blast furnace slag and other industrial wastes are then presented, and the concept of developing cementitious materials for backfill based on the whole solid waste is proposed. The advances in the mechanical characteristics of cemented backfill are elaborated on four typical levels: static mechanics, dynamic mechanics, mechanical influencing factors, and multi-scale mechanics. The working/rheological characteristics of the filling slurry are presented, given the importance of the filling materials conveying process. Finally, the future perspectives of mining with backfill are discussed based on the features of modern filling concepts to provide the necessary theoretical research value for filling mining.
mining with backfill / cementitious materials / mechanical characteristics / slurry properties / future perspectives
| [1] |
|
| [2] |
|
| [3] |
J. Wei, J.J. Zhang, X. Wu, and Z.Y. Song, Governance in mining enterprises: An effective way to promote the intensification of resources—taking coal resources as an example, Resour. Policy, 76(2022), art. No. 102623. |
| [4] |
J.Y. Peng, S. Zhang, Y.Y. Han, B.T. Bate, H. Ke, and Y.M. Chen, Soil heavy metal pollution of industrial legacies in China and health risk assessment, Sci. Total Environ., 816(2022), art. No. 151632. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
H.F. Qiu, F.S. Zhang, L. Liu, D.Z. Hou, and B.B. Tu, Influencing factors on strength of waste rock tailing cemented backfill, Geofluids, 2020(2020), art. No. 8847623. |
| [9] |
T.T. Xu, C.Y. Kang, and H. Zhang, China’s efforts towards carbon neutrality: does energy-saving and emission-reduction policy mitigate carbon emissions, J. Environ. Manage., 316(2022), art. No. 115286. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
W. Liang, K. Li, J.S. Luo, Y.L. Zhe, M.T. Xu, and F.S. Feng, Experimental study on the interaction between backfill and surrounding rock in the overhand cut-and-fill method, Minerals, 12(2022), No. 8, art. No. 1017. |
| [16] |
G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. |
| [17] |
|
| [18] |
|
| [19] |
G.D. Lu, X.G. Yang, S.C. Qi, G. Fan, and J.W. Zhou, Coupled chemo-hydro-mechanical effects in one-dimensional accretion of cemented mine fills, Eng. Geol., 267(2020), art. No. 105495. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
J.J. Li, E. Yilmaz, and S. Cao, Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills, Constr. Build. Mater., 299(2021), art. No. 124288. |
| [33] |
|
| [34] |
|
| [35] |
G. Yao, Q. Wang, Y.W. Su, J.X. Wang, J. Qiu, and X.J. Lyu, Mechanical activation as an innovative approach for the preparation of pozzolan from iron ore tailings, Miner. Eng., 145(2020), art. No. 106068. |
| [36] |
|
| [37] |
|
| [38] |
Z.Y. Zhao, K.H. Guo, and X.L. Wang, A binder prepared by low-reactivity blast furnace slags for cemented paste backfill: Influence of super-fine fly ash and chemical additives, Constr. Build. Mater., 327(2022), art. No. 126988. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
J.S. Qiu, K. Cheng, R.Y. Zhang, Y. Gao, and X. Guan, Study on the influence mechanism of activated coal gangue powder on the properties of filling body, Constr. Build. Mater., 345(2022), art. No. 128071. |
| [44] |
T. Yilmaz, B. Ercikdi, and F. Cihangir, Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill, J. Environ. Manage., 258(2020), art. No. 110037. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
G. Xie, Y.L. Suo, L. Liu, et al., Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material, Case Stud. Constr. Mater., 18(2023), art. No. e01778. |
| [49] |
|
| [50] |
D.F. Zhao, Reactive MgO-modified slag-based binders for cemented paste backfill and potential heavy-metal leaching behavior, Constr. Build. Mater., 298(2021), art. No. 123894. |
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
H.X. Ding and S.Y. Zhang, Quicklime and calcium sulfoaluminate cement used as mineral accelerators to improve the properties of cemented paste backfill with a high volume of fly ash, Materials, 13(2020), No. 18, art. No. 4018. |
| [56] |
Z.Q. Huang, E. Yilmaz, and S.A. Cao, Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum, Minerals, 11(2021), No. 4, art. No. 409. |
| [57] |
L. Liu, S.S. Ruan, C.C. Qi, et al., Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill, J. Cleaner Prod., 279(2021), art. No. 123684. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
M. Nag and T. Shimaoka, A novel and sustainable technique to immobilize lead and zinc in MSW incineration fly ash by using pozzolanic bottom ash, J. Environ. Manage., 329(2023), art. No. 117036. |
| [62] |
Y.L. Liu, Z.Y. Mo, Y.P. Su, and Y.H. Chen, State-of-the-art controlled low-strength materials using incineration industrial by-products as cementitious materials, Constr. Build. Mater., 345(2022), art. No. 128391. |
| [63] |
J.J. Li, E. Yilmaz, and S. Cao, Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill, Minerals, 10(2020), No. 10, art. No. 922. |
| [64] |
C.D. Min, Y. Shi, and Z.X. Liu, Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr. Build. Mater., 305(2021), art. No. 124786. |
| [65] |
|
| [66] |
K.W. Rong, W.T. Lan, and H.Y. Li, Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum, Minerals, 10(2020), No. 4, art. No. 324. |
| [67] |
|
| [68] |
J. Zhang, S.C. Li, and Z.F. Li, Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks, J. Cleaner Prod., 273(2020), art. No. 122972. |
| [69] |
S.A. Li, R. Zhang, R. Feng, B.Y. Hu, G.J. Wang, and H.X. Yu, Feasibility of recycling bayer process red mud for the safety backfill mining of layered soft bauxite under coal seams, Minerals, 11(2021), No. 7, art. No. 722. |
| [70] |
Z.K. Wang, Y.M. Wang, L.B. Wu, et al., Effective reuse of red mud as supplementary material in cemented paste backfill: durability and environmental impact, Constr. Build. Mater., 328(2022), art. No. 127002. |
| [71] |
|
| [72] |
X.P. Song, Y.X. Hao, S. Wang, L. Zhang, W. Liu, and J.B. Li, Mechanical properties, crack evolution and damage characteristics of prefabricated fractured cemented paste backfill under uniaxial compression, Constr. Build. Mater., 330(2022), art. No. 127251. |
| [73] |
|
| [74] |
|
| [75] |
J. Wang, J.X. Fu, and W.D. Song, Mechanical properties and microstructure of layered cemented paste backfill under triaxial cyclic loading and unloading, Constr. Build. Mater., 257(2020), art. No. 119540. |
| [76] |
D. Wu, W.T. Hou, S. Liu, and H.B. Liu, Mechanical response of barricade to coupled THMC behavior of cemented paste backfill, Int. J. Concr. Struct. Mater., 14(2020), No. 1, art. No. 39. |
| [77] |
|
| [78] |
X.P. Song, J.B. Li, S. Wang, et al., Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution, Constr. Build. Mater., 361(2022), art. No. 129737. |
| [79] |
F.G. Yang, F. Wu, B.G. Yang, L.T. Li, and Q. Gao, Preparation and performance of composite activated slag-based binder for cemented paste backfill, Chemosphere, 309(2022), art. No. 136649. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
D. Zheng, W.D. Song, S. Cao, and J.J. Li, Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects, Constr. Build. Mater., 320(2022), art. No. 126321. |
| [89] |
|
| [90] |
|
| [91] |
G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. |
| [92] |
E.Y. Liu, Q.L. Zhang, Y. Feng, and J.W. Zhao, Experimental study of static and dynamic mechanical properties of doubledeck backfill body, Environ. Earth Sci., 76(2017), No. 20, art. No. 689. |
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
J.Y. Wu, H.W. Jing, Q. Yin, B. Meng, and G.S. Han, Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure, dosage and particle size effects, Constr. Build. Mater., 242(2020), art. No. 118132. |
| [97] |
Y.H. Zhao, Y.X. Guo, G.R. Feng, C.Q. Li, W.S. Xie, and C.L. Zhang, Study on strength and deformation characteristics of cemented gangue backfill body under the coupling action of load and salt erosion, Constr. Build. Mater., 342(2022), art. No. 128003. |
| [98] |
|
| [99] |
N. Zhou, C.W. Dong, J.X. Zhang, G.H. Meng, and Q.Q. Cheng, Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill, Constr. Build. Mater., 313(2021), art. No. 125492. |
| [100] |
|
| [101] |
|
| [102] |
M. Tao, D.M. Lu, Y. Shi, and C.Q. Wu, Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag, Sci. Total Environ., 849(2022), art. No. 157797. |
| [103] |
Z.G. Xiu, S.H. Wang, Y.C. Ji, F.L. Wang, and F.Y. Ren, Experimental study on the triaxial mechanical behaviors of the cemented paste backfill: Effect of curing time, drainage conditions and curing temperature, J. Environ. Manage., 301(2022), art. No. 113828. |
| [104] |
T. Kasap, E. Yilmaz, N.U. Guner, and M. Sari, Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties, Adv. Mater. Sci. Eng., 2022(2022), art. No. 6993068. |
| [105] |
X.M. Wei, L.J. Guo, C.H. Li, L.X. Zhang, W.C. Luo, and R. Liu, Study of space variation law of strength of high stage cemented backfill, Rock Soil Mech., Suppl.2(2018), p. 45. |
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
A.A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater., 322(2022), art. No. 126448. |
| [110] |
Y.B. Hu, W.P. Li, X.M. Chen, H.Z. Xu, and S.L. Liu, Temporal and spatial evolution characteristics of fracture distribution of floor strata in deep coal seam mining, Eng. Fail. Anal., 132(2022), art. No. 105931. |
| [111] |
|
| [112] |
B. Pal and A. Ramaswamy, A multi-physics-based approach to predict mechanical behavior of concrete element in a multi-scale framework, Mech. Mater., 176(2023), art. No. 104509. |
| [113] |
|
| [114] |
|
| [115] |
X.P. Song, Y.X. Hao, S. Wang, et al., Dynamic mechanical response and damage evolution of cemented tailings backfill with alkalized rice straw under SHPB cycle impact load, Constr. Build. Mater., 327(2022), art. No. 127009. |
| [116] |
|
| [117] |
K. Zhao, X. Yu, S.T. Zhu, et al., Acoustic emission fractal characteristics and mechanical damage mechanism of cemented paste backfill prepared with tantalum niobium mine tailings, Constr. Build. Mater., 258(2020), art. No. 119720. |
| [118] |
L. Liu, M. Yang, X.B. Zhang, J.R. Mao, and P. Chai, LNMR experimental study on the influence of gas pressure on methane adsorption law of middle-rank coal, J. Nat. Gas Sci. Eng., 91(2021), art. No. 103949. |
| [119] |
|
| [120] |
Y. Wang, H.J. Wang, X.L. Zhou, X.F. Yi, Y.G. Xiao, and X.M. Wei, In situ X-ray CT investigations of meso-damage evolution of cemented waste rock-tailings backfill (CWRTB) during triaxial deformation, Minerals, 9(2019), No. 1, art. No. 52. |
| [121] |
|
| [122] |
A.E. Belibi Tana, S.H. Yin, and L.M. Wang, Investigation on mechanical characteristics and microstructure of cemented whole tailings backfill, Minerals, 11(2021), No. 6, art. No. 592. |
| [123] |
D.J. Zou, Z.C. Que, W. Cui, X. Wang, Y.H. Guo, and S.D. Zhang, Feasibility of recycling autoclaved aerated concrete waste for partial sand replacement in mortar, J. Build. Eng., 52(2022), art. No. 104481. |
| [124] |
|
| [125] |
|
| [126] |
H. Zhang, S. Cao, and E. Yilmaz, Carbon nanotube reinforced cementitious tailings composites: Links to mechanical and microstructural characteristics, Constr. Build. Mater., 365(2023), art. No. 130123. |
| [127] |
M. Sari, E. Yilmaz, T. Kasap, and N.U. Guner, Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures, Constr. Build. Mater., 328(2022), art. No. 127109. |
| [128] |
|
| [129] |
B.X. Yan, H.W. Jia, E. Yilmaz, X.P. Lai, P.F. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. |
| [130] |
|
| [131] |
|
| [132] |
China State Administration for Market RegulationChina National Standardization Administration, GB/T 39489-2020. Technical Specification for the Total Tailings Paste Backfill, 2020, Beijing, China Quality and Standards Publishing & Media Co., Ltd. |
| [133] |
Ministry of Construction of the People’s Republic of China and China State General Administration for Quality Supervision and Inspection and Quarantine, GB/T 50080-2016. Standard for Test Method of Performance on Ordinary Fresh Concrete, 2020, Beijing, China Quality and Standards Publishing & Media Co., Ltd. |
| [134] |
Z.P. Yan, S.H. Yin, X. Chen, and L.M. Wang, Rheological properties and wall-slip behavior of cemented tailing-waste rock backfill (CTWB) paste, Constr. Build. Mater., 324(2022), art. No. 126723. |
| [135] |
|
| [136] |
C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. |
| [137] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. |
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. |
| [148] |
L.J. Su, G.S. Fu, Y.L. Wang, et al., Preparation and performance of a low-carbon foam material of fly-ash-based foamed geopolymer for the goaf filling, Materials, 13(2020), No. 4, art. No. 841. |
| [149] |
J.P. Qiu, Y.L. Zhao, H. Long, Z.B. Guo, J. Xing, and X.G. Sun, Low-carbon binder for cemented paste backfill: Flowability, strength and leaching characteristics, Minerals, 9(2019), No. 11, art. No. 707. |
| [150] |
Ministry of Natural Resources of the People’s Republic of China. Five-year National Plan on Mineral Resources (2016—2020), 2016, Beijing, Ministry of Natural Resources of the People’s Republic of China. |
| [151] |
T. Henckens, Scarce mineral resources: Extraction, consumption and limits of sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105511. |
| [152] |
H.Y. Zhu, D.D. Zhang, H.H. Goh, et al., Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction, Sustain. Cities Soc., 89(2023), art. No. 104322. |
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
S.K. Behera, D.P. Mishra, P. Singh, et al., Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective, Constr. Build. Mater., 309(2021), art. No. 125120. |
| [160] |
Z.J. Wang, Y.P. Kou, Z.B. Wang, Z.H. Wu, and J.R. Guo, Random forest slurry pressure loss model based on loop experiment, Minerals, 12(2022), No. 4, art. No. 447. |
| [161] |
Y.P. Kou, Y.H. Liu, G.Q. Li, J.E. Hou, L.M. Luan, and H. Wang, Design and implementation of an integrated management system for backfill experimental data, Adv. Civ. Eng., 2022(2022), art. No. 1876435. |
| [162] |
|
| [163] |
|
| [164] |
S.M. Chen, W. Wang, R.F. Yan, A.X. Wu, Y.M. Wang, and E. Yilmaz, A joint experiment and discussion for strength characteristics of cemented paste backfill considering curing conditions, Minerals, 12(2022), No. 2, art. No. 211. |
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
A.A. Wang, S. Cao, and E. Yilmaz, Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill, Constr. Build. Mater., 344(2022), art. No. 128179. |
| [172] |
Y. Wang, Q. Na, and L.F. Zhang, Monitoring of in situ properties for cemented tailings backfill that under drainage condition, Constr. Build. Mater., 356(2022), art. No. 129254. |
| [173] |
S. Cao, D. Zheng, E. Yilmaz, Z.Y. Yin, G.L. Xue, and F.D. Yang, Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects, Constr. Build. Mater., 256(2020), art. No. 119408. |
| [174] |
|
| [175] |
|
| [176] |
B.X. Yan, W.C. Zhu, C. Hou, E. Yilmaz, and M. Saadat, Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave, Constr. Build. Mater., 249(2020), art. No. 118733. |
| [177] |
|
| [178] |
B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. |
/
| 〈 |
|
〉 |