Dynamic behavior of tunneling triboelectric charges in two-dimensional materials
Xuan Zhao , Liangxu Xu , Xiaochen Xun , Fangfang Gao , Qingliang Liao , Yue Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1801 -1808.
Dynamic behavior of tunneling triboelectric charges in two-dimensional materials
Although the research history of triboelectrification has been more than 2000 years, there are still many problems to be solved so far. The use of scanning probe microscopy provides an important way to quantitatively study the transfer, accumulation, and dissipation of triboelectric charges in the process of triboelectrification. Two-dimensional materials are considered to be key materials for new electronic devices in the post-Moore era due to their atomic-scale size advantages. If the electrostatic field generated by triboelectrification can be used to replace the traditional gate electrostatic field, it is expected to simplify the structure of two-dimensional electronic devices and reconfigure them at any time according to actual needs. Here, we investigate the triboelectrification process of various two-dimensional materials such as MoS2, WSe2, and ZnO. Different from traditional bulk materials, after two-dimensional materials are rubbed, the triboelectric charges generated may tunnel through the two-dimensional materials to the underlying substrate surface. Because the tunneling triboelectric charge is protected by the two-dimensional material, its stable residence time on the substrate surface can reach more than 7 days, which is more than tens of minutes for the traditional triboelectric charge. In addition, the electrostatic field generated by the tunneling triboelectric charge can effectively regulate the carrier transport performance of two-dimensional materials, and the source–drain current of the field effect device regulated by the triboelectric floating gate is increased by nearly 60 times. The triboelectric charge tunneling phenomenon in two-dimensional materials is expected to be applied in the fields of new two-dimensional electronic devices and reconfigurable functional circuits.
two-dimensional materials / triboelectric charge / dynamic behavior / reconfigurable electronics
| [1] |
A.P. Johnson, H.J. Cleaves, J.P. Dworkin, D.P. Glavin, A. Lazcano, and J.L. Bada, The Miller volcanic spark discharge experiment, Science, 322(2008), No. 5900, art. No. 404. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. |
| [13] |
J.L. Du, H.H. Yu, B.S. Liu, et al., Strain engineering in 2D material-based flexible optoelectronics, Small Methods, 5(2021), No. 1, art. No. 2000919. |
| [14] |
|
| [15] |
Z.M. Ye, C. Tan, X.L. Huang, et al., Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett., 15(2023), No. 1, art. No. 38. |
| [16] |
X.K. Zhang, Q.L. Liao, S. Liu, et al., Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun., 8(2017), art. No. 15881. |
| [17] |
|
| [18] |
H.H. Yu, Q.L. Liao, Z. Kang, et al., Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection, Small, 16(2020), No. 47, art. No. 2005520. |
| [19] |
L.F. Xue, Z. Zhang, L.X. Xu, et al., Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback, Nano Energy, 87(2021), art. No. 106117. |
| [20] |
X. Zhao, Z. Zhang, L.X. Xu, et al., Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. |
| [21] |
X. Zhao, Z. Zhang, Q.L. Liao, et al., Self-powered user-interactive electronic skin for programmable touch operation platform, Sci. Adv., 6(2020), No. 28, art. No. eaba4294. |
| [22] |
|
| [23] |
S. Kim, T.Y. Kim, K.H. Lee, et al., Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun., 8(2017), art. No. 15891. |
| [24] |
L. Cheng, Q. Xu, Y.B. Zheng, X.F. Jia, and Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed, Nat. Commun., 9(2018), No. 1, art. No. 3773. |
| [25] |
|
/
| 〈 |
|
〉 |