Effect of Ca/Mg molar ratio on the calcium-based sorbents
Yumeng Li , Qing Zhao , Xiaohui Mei , Chengjun Liu , Henrik Saxén , Ron Zevenhoven
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2182 -2190.
Effect of Ca/Mg molar ratio on the calcium-based sorbents
Steelmaking industry faces urgent demands for both steel slag utilization and CO2 abatement. Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO2 capture. In this work, the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation, and the initial CO2 chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g. Moreover, the effect of Ca/Mg molar ratio on the morphology, structure, and CO2 chemisorption capacity of the calcium-based sorbents were investigated. The results show that the optimal Ca/Mg molar ratio of sorbent for CO2 capture was 4.2:1, and the skeleton support effect of MgO in calcium-based sorbents was determined. Meanwhile, the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model. There were two processes of CO2 chemisorption, and the activation energy of the first stage (reaction control) was found to be lower than that of the second stage (diffusion control).
steel slag / carbon dioxide capture / sorbent / chemisorption / kinetics
| [1] |
|
| [2] |
W.L. Dong, G.H. Ding, A.J. Xu, et al., Development of CO2 capture and utilization technology in steelmaking plant, Iron Steel Res. Int., (2023). DOI: https://doi.org/10.1007/s42243-023-00927-3 |
| [3] |
H.X. Zhang, W.Q. Sun, W.D. Li, and G.Y. Ma, A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material-energy-carbon hub, Appl. Energy, 309(2022), art. No. 118485. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Y.J. Li, R.Y. Sun, H.L. Liu, and C.M. Lu, Reactivation properties of carbide slag as a CO2 sorbent during calcination/carbonation cycles, [in] H.Y. Qi and B. Zhao, eds., Cleaner Combustion and Sustainable World, Berlin, 2013, p. 1233. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Effect of lime on stability of chromium in stainless steel slag, Minerals, 8(2018), No. 10, art. No. 424. |
| [24] |
Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Stability of chromium in stainless steel slag during cooling, Minerals, 8(2018), No. 10, art. No. 445. |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
M.A. Naeem, A. Armutlulu, Q. Imtiaz, et al., Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents, Nat. Commun., 9(2018), art. No. 2408. |
| [36] |
|
| [37] |
|
| [38] |
X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
/
| 〈 |
|
〉 |