Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates

Yuji Bai , Zhixiu Wang , Bo Jiang , Mengqi Li , Cong Zhu , Xiaotong Gu , Hai Li

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2212 -2223.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2212 -2223. DOI: 10.1007/s12613-023-2652-3
Article

Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates

Author information +
History +
PDF

Abstract

The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and transmission electron microscopy (TEM). Results indicated that the ultimate tensile strength (UTS) and yield strength (YS) of the alloy decreased firstly and then increased from the 1/8T position to the 1/2T position, whereas elongation to failure (E f) decreased gradually such that its value along the rolling direction (RD) was higher than those along the transverse direction (TD) at the same thickness position. From the 1/8T position to the 3/8T position of the alloy, the UTS and YS along the TD were higher than those along the RD. At the 1/2T position of the alloy, the UTS, YS, and E f along the RD were the highest, whereas those along the normal direction (ND) were the lowest. Microstructural observations further revealed that the anisotropy of tensile properties was related to grain morphology, crystal texture, second-phase particles, and Li atom segregation.

Keywords

297 alloy thick plate / tensile properties / anisotropy / grain morphology / second-phase particles

Cite this article

Download citation ▾
Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu, Hai Li. Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(11): 2212-2223 DOI:10.1007/s12613-023-2652-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-Aty AA, Xu Y, Guo XZ, Zhang SH, Ma Y, Chen DY. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review. Adv. Res., 2018, 10, 49.

[2]

Rioja RJ, Liu J. The evolution of Al–Li base products for aerospace and space applications. Metall. Mater. Trans. A, 2012, 43(9): 3325.

[3]

Deschamps A, Sigli C, Mourey T, de Geuser F, Lefebvre W, Davo B. Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy. Acta Mater., 2012, 60(5): 1917.

[4]

Han J, Zhu ZX, Li HJ, Gao C. Microstructural evolution, mechanical property and thermal stability of Al–Li 2198-T8 alloy processed by high pressure torsion. Mater. Sci. Eng. A, 2016, 651, 435.

[5]

Zhang XY, Huang T, Yang WX, Xiao RS, Liu Z, Li L. Microstructure and mechanical properties of laser beam-welded AA2060 Al–Li alloy. J. Mater. Process. Technol., 2016, 237, 301.

[6]

Goebel J, Ghidini T, Graham AJ. Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy. Mater. Sci. Eng. A, 2016, 673, 16.

[7]

Yang Y, Ma F, Hu HB, Zhang QM, Zhang XW. Microstructure evolution of 2195 Al–Li alloy subjected to highstrain-rate deformation. Mater. Sci. Eng. A, 2014, 606, 299.

[8]

Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater., 2003, 51(19): 5775.

[9]

Rioja RJ. Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications. Mater. Sci. Eng. A, 1998, 257(1): 100.

[10]

Chakrabarti DJ, Weiland H, Cheney BA, Staley JT. Through thickness property variations in 7050 plate. Mater. Sci. Forum, 1996, 217–222, 1085.

[11]

Cho KK, Chung YH, Lee CW, Kwun SI, Shin MC. Effects of grain shape and texture on the yield strength anisotropy of Al–Li alloy sheet. Scripta Mater., 1999, 40(6): 651.

[12]

Bois-Brochu A, Blais C, Goma FAT, Larouche D, Boselli J, Brochu M. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties. Mater. Sci. Eng. A, 2014, 597, 62.

[13]

Wu PF, Deng YL, Zhang J, Fan ST, Zhang XM. The effect of inhomogeneous microstructures on strength and fatigue properties of an Al–Cu–Li thick plate. Mater. Sci. Eng. A, 2018, 731, 1.

[14]

D. Wang, C. Gao, H.Y. Luo, Y.H. Yang, and Y. Ma, Texture evolution behavior and anisotropy of 2A97 Al–Li alloy during recrystallization at elevated temperature, Rare Met., (2018), p. 1.

[15]

T.Z. Zhao, L. Jin, Y. Xu, and S.H. Zhang, Anisotropic yielding stress of 2198 Al–Li alloy sheet and mechanisms, Mater. Sci. Eng. A, 771(2020), art. No. 138572.

[16]

X. Xu, M. Hao, J. Chen, et al., Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates, Mater. Sci. Eng. A, 829(2022), art. No. 142135.

[17]

Ma J, Wang Q, Zhang TY, Cao H, Yang YB, Zhang ZM. Effect of natural aging time on tensile and fatigue anisotropy of extruded 7075 Al alloy. J. Mater. Res. Technol., 2022, 18, 4683.

[18]

L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on the microstructure, mechanical properties and anisotropy of hot extruded Al–Mg–Si plate, Mater. Des., 182(2019), art. No. 107999.

[19]

Huang G, Li ZH, Sun LM, et al. Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes. Rare Met., 2021, 40(9): 2523.

[20]

Li ZH, Xiong BQ, Zhang YA, Zhu BH, Wang F, Liu HW. Investigation on strength, toughness and microstructure of an Al–Zn–Mg–Cu alloy pre-stretched thick plates in various ageing tempers. J. Mater. Process. Technol., 2009, 209(4): 2021.

[21]

Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater. Sci. Eng. A, 2003, 356(1–2): 326.

[22]

Zhao K, Liu JH, Yu M, Li SM. Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al–Li alloy thick plate. Trans. Nonferrous Met. Soc. China, 2019, 29(9): 1793.

[23]

Meng L, Tian L. Stress concentration sensitivity of Al–Li based alloys with various contents of impurities and cerium addition. Mater. Sci. Eng. A, 2002, 323(1–2): 239.

[24]

Risanti DD, Yin M, del Castillo PEJRD, van der Zwaag S. A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061. Mater. Sci. Eng. A, 2009, 523(1–2): 99.

[25]

Albedah A, Bouiadjra BB, Mohammed SMAK, Benyahia F. Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys. Int. J. Miner. Metall. Mater., 2020, 27(1): 83.

[26]

Thompson AW. The relation between changes in ductility and in ductile fracture topography: Control by microvoid nucleation. Acta Metall., 1983, 31(10): 1517.

[27]

Li H, Mao QZ, Wang ZX, Miao FF, Fang BJ, Zheng ZQ. Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling. Mater. Sci. Eng. A, 2015, 620, 204.

[28]

Lee CS, Smallman RE, Duggan BJ. Effect of rolling geometry and surface friction on cube texture formation. Mater. Sci. Technol., 1994, 10(2): 149.

[29]

Li GJ, Guo MX, Wang Y, Zheng CH, Zhang JS, Zhuang LZ. Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio. Int. J. Miner. Metall. Mater., 2019, 26(6): 740.

[30]

Engler O, Kong XW, Lücke K. Recrystallisation textures of particle-containing Al–Cu and Al–Mn single crystals. Acta Mater., 2001, 49(10): 1701.

[31]

Starink MJ, Wang SC. A model for the yield strength of overaged Al–Zn-Mg-Cu alloys. Acta Mater., 2003, 51(17): 5131.

[32]

Gao N, Starink MJ, Davin L, Cerezo A, Wang SC, Gregson PJ. Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys. Mater. Sci. Technol., 2005, 21(9): 1010.

[33]

Lu DD, Li JF, Ning H, et al. Effects of microstructure on tensile properties of AA2050-T84 Al–Li alloy. Trans. Nonferrous Met. Soc. China, 2021, 31(5): 1189.

[34]

Kumar KS, Brown SA, Pickens JR. Microstructural evolution during aging of an AlCuLiAgMgZr alloy. Acta Mater., 1996, 44(5): 1899.

[35]

Wang YX, Zhao GQ, Xu X, Chen XX, Zhang WD. Microstructures and mechanical properties of spray deposited 2195 Al–Cu–Li alloy through thermo-mechanical processing. Mater. Sci. Eng. A, 2018, 727, 78.

[36]

B.X. Xie, L. Huang, J.H. Xu, et al., Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142394.

[37]

Lei WB, Liu XT, Wang WM, Sun Q, Xu YZ, Cui JZ. On the influences of Li on the microstructure and properties of hypoeutectic Al–7Si alloy. J. Alloys Compd., 2017, 729, 703.

[38]

Tsivoulas D, Robson JD, Sigli C, Prangnell PB. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys. Acta Mater., 2012, 60(13–14): 5245.

[39]

Duan SW, Matsuda K, Wang T, Zou Y. Microstructures and mechanical properties of a cast Al–Cu–Li alloy during heat treatment procedure. Rare Met., 2021, 40(7): 1897.

[40]

Zhang XX, Zhou XR, Hashimoto T, et al. Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: The influence of non-uniform precipitation. Corros. Sci., 2018, 132, 1.

[41]

Yang G, Li Z, Yuan Y, Lei Q. Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing. J. Alloys Compd., 2015, 640, 347.

[42]

Dillamore IL. Factors affecting the rolling recrystallisation textures in F.C.C. metals. Acta Metall., 1964, 12(9): 1005.

[43]

Smallman RE, Green D. The dependence of rolling texture on stacking fault energy. Acta Metall., 1964, 12(2): 145.

[44]

Birosca S, Gioacchino FD, Stekovic S, Hardy M. A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy. Acta Mater., 2014, 74, 110.

[45]

Sun S, Adams BL, King WE. Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Philos. Mag. A, 2000, 80(1): 9.

[46]

Zhao Q, Liu ZY, Hu YC, Li FD, Luo C, Li SS. Texture effect on fatigue crack propagation in aluminium alloys: An overview. Mater. Sci. Technol., 2019, 35(15): 1789.

[47]

Cvijović Z, Vratnica M, Rakin M. Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings. Mater. Sci. Eng. A, 2006, 434(1–2): 339.

[48]

Wen K, Xiong BQ, Zhang YA, et al. Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents. Rare Met., 2021, 40(8): 2160.

[49]

Zindal A, Jain J, Prasad R, et al. Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg–8Al–0.5Zn alloy. Mater. Charact., 2018, 136, 175.

[50]

Lynch SP, Wilson AR, Byrnes RT. Effects of ageing treatments on resistance to intergranular fracture of 8090 Al–Li alloy plate. Mater. Sci. Eng. A, 1993, 172(1–2): 79.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/