High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature

Yiqi Zhou , Sultan Mahmood , Dirk Lars Engelberg

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2375 -2385.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2375 -2385. DOI: 10.1007/s12613-023-2651-4
Article

High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature

Author information +
History +
PDF

Abstract

Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode (BPE), providing direct access to the anodic and cathodic reactions under a wide range of applied potentials. The occurrence of pitting corrosion, crevice corrosion, and general corrosion on type 2205 duplex stainless steel (DSS 2205) BPE has been observed at room temperature. The critical pit depth of 10–20 µm with a 55%–75% probability of pits developing into stable pits at potential from +0.9 to +1.2 V vs. OCP (open circuit potential) are measured. All pit nucleation sites are either within ferritic grains or at the interface between austenite and ferrite. The critical conditions for pitting and crevice corrosion are discussed with E pit (critical pitting potential) and E cre (critical crevice potential) decreasing from 0.87 and 0.80 V vs. OCP after 150 s of exposure to 0.84 and 0.76 V vs. OCP after 900 s of exposure, respectively. Pit growth kinetics under different applied bipolar potentials and exposure times have been obtained. The ferrite is shown to be more susceptible to general dissolution.

Keywords

bipolar electrochemistry / duplex stainless steel / pitting corrosion / pit growth factor / crevice corrosion

Cite this article

Download citation ▾
Yiqi Zhou, Sultan Mahmood, Dirk Lars Engelberg. High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(12): 2375-2385 DOI:10.1007/s12613-023-2651-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Eden, K. Scida, N. Arroyo-Currás, J.C.T. Eijkel, C.D. Meinhart, and S. Pennathur, Discharging behavior of confined bipolar electrodes: Coupled electrokinetic and electrochemical dynamics, Electrochim. Acta, 330(2020), art. No. 135275.

[2]

Eden A, Scida K, Arroyo-Currás N, Eijkel JCT, Meinhart CD, Pennathur S. Modeling faradaic reactions and electrokinetic phenomena at a nanochannel-confined bipolar electrode. J. Phys. Chem. C, 2019, 123(9): 5353.

[3]

Kuhn A, Crooks RM, Inagi S. A compelling case for bipolar electrochemistry. ChemElectroChen, 2016, 3(3): 351.

[4]

Koefoed L, Pedersen SU, Daasbjerg K. Bipolar electrochemistry—A wireless approach for electrode reactions. Curr. Opin. Electrochem., 2017, 2(1): 13.

[5]

Loget G, Kuhn A. Shaping and exploring the micro- and nanoworld using bipolar electrochemistry. Anal. Bioanal. Chem., 2011, 400(6): 1691.

[6]

Munktell S, Tydén M, Högström J, Nyholm L, Björefors F. Bipolar electrochemistry for high-throughput corrosion screening. Electrochem. Commun., 2013, 34, 274.

[7]

Munktell S, Nyholm L, Björefors F. Towards high throughput corrosion screening using arrays of bipolar electrodes. J. Electroanal. Chem., 2015, 747, 77.

[8]

Pébère N, Vivier V. Local electrochemical measurements in bipolar experiments for corrosion studies. ChemElectroChem, 2016, 3(3): 415.

[9]

Y.Q. Zhou, N. Stevens, and D.L. Engelberg, Corrosion electrochemistry with a segmented array bipolar electrode, Electrochim. Acta, 375(2021), art. No. 137668.

[10]

Metals, 2020, 10(6) art. No. 794

[11]

Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, A novel high throughput electrochemistry corrosion test method: Bipolar electrochemistry, Curr. Opin. Electrochem., 39(2023), art. No. 101263.

[12]

Y.Q. Zhou and D.L. Engelberg, Time-lapse observation of pitting corrosion in ferritic stainless steel under bipolar electrochemistry control, J. Electroanal. Chem., 899(2021), art. No. 115599.

[13]

Y.Q. Zhou, A. Kablan, and D.L. Engelberg, Metallographic screening of duplex stainless steel weld microstructure with a bipolar electrochemistry technique, Mater. Charact., 169(2020), art. No. 110605.

[14]

Y.Q. Zhou and D.L. Engelberg, Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel, Mater. Chem. Phys., 275(2022), art. No. 125183.

[15]

Zhou YQ, Engelberg DL. Accessing the full spectrum of corrosion behaviour of tempered type 420 stainless steel. Mater. Corros., 2021, 72(11): 1718.

[16]

Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Bipolar electrochemistry for high throughput screening of localised corrosion in stainless steel rebars, Constr. Build. Mater., 366(2023), art. No. 130174.

[17]

Hoseinpoor M, Momeni M, Moayed M, Davoodi A. EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidified ferric chloride solution. Corros. Sci., 2014, 80, 197.

[18]

Ebrahimi N, Momeni M, Kosari A, Zakeri M, Moayed MH. A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corros. Sci., 2012, 59, 96.

[19]

Eghbali F, Moayed MH, Davoodi A, Ebrahimi N. Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations. Corros. Sci., 2011, 53(1): 513.

[20]

Y.Q. Zhou and D. Engelberg, Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments, Electrochem. Commun., 117(2020), art. No. 106779.

[21]

Zhou YQ, Engelberg DL. Application of a modified bipolar electrochemistry approach to determine pitting corrosion characteristics. Electrochem. Commun., 2018, 93, 158.

[22]

Y.Q. Zhou, J.T. Qi, and D.L. Engelberg, On the application of bipolar electrochemistry for simulating galvanic corrosion behaviour of dissimilar stainless steels, Electrochem. Commun., 126(2021), art. No. 107023.

[23]

Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Brass dezincification with a bipolar electrochemistry technique, Surf. Interfaces, 22(2021), art. No. 100865.

[24]

Gunn RN. Duplex Stainless Steels: Microstructure, Properties and Applications, 1997, Cambridge, Woodhead publishing, 3.

[25]

Tan H, Wang ZY, Jiang YM, et al. Annealing temperature effect on the pitting corrosion resistance of plasma arc welded joints of duplex stainless steel UNS S32304 in 1.0 M NaCl. Corros. Sci., 2011, 53(6): 2191.

[26]

Nilsson JO. Super duplex stainless steels. Mater. Sci. Technol., 1992, 8(8): 685.

[27]

Sun L, Sun YT, Liu YY, Dai NW, Li J, Jiang YM. Effect of annealing temperature on pitting behavior and microstructure evolution of hyper-duplex stainless steel 2707. Mater. Corros., 2019, 70(9): 1682.

[28]

Tan H, Jiang YM, Deng B, Sun T, Xu JL, Li J. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750. Mater. Charact., 2009, 60(9): 1049.

[29]

Gholami M, Hoseinpoor M, Moayed MH. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel. Corros. Sci., 2015, 94, 156.

[30]

Zhang LH, Zhang W, Jiang YM, Deng B, Sun DM, Li J. Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101. Electrochim. Acta, 2009, 54(23): 5387.

[31]

Kim ST, Kim SY, Lee IS, Park YS, Shin MC, Kim YS. Effects of shielding gases on the microstructure and localized corrosion of tube-to-tube sheet welds of super austenitic stainless steel for seawater cooled condenser. Corros. Sci., 2011, 53(8): 2611.

[32]

Ebrahimi N, Moayed MH, Davoodi A. Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium. Corros. Sci., 2011, 53(4): 1278.

[33]

Adeli M, Golozar MA, Raeissi K. Pitting corrosion of SAF2205 duplex stainless steel in acetic acid containing bromide and chloride. Chem. Eng. Commun., 2010, 197(11): 1404.

[34]

Örnek C, Zhong XL, Engelberg DL. Low-temperature environmentally assisted cracking of grade 2205 duplex stainless steel beneath a MgCl2:FeCl3 Salt droplet. Corrosion, 2016, 72(3): 384.

[35]

Kim YJ, Kim SW, Kim HB, Park CN, Choi YI, Park CJ. Effects of the precipitation of secondary phases on the erosion-corrosion of 25% Cr duplex stainless steel. Corros. Sci., 2019, 152, 202.

[36]

Krawczyk B, Cook P, Hobbs J, Engelberg DL. Corrosion behavior of cold rolled type 316L stainless steel in HCl-containing environments. Corrosion, 2017, 73(11): 1346.

[37]

Hwang H, Park Y. Effects of heat treatment on the phase ratio and corrosion resistance of duplex stainless steel. Mater. Trans., 2009, 50(6): 1548.

[38]

K. Eguchi, T.L. Burnett, and D.L. Engelberg, X-ray tomographic characterisation of pitting corrosion in lean duplex stainless steel, Corros. Sci., 165(2020), art. No. 108406.

[39]

Srinivasan J, McGrath MJ, Kelly RG. Mass transport and electrochemical phenomena influencing the pitting and re-passivation of stainless steels in neutral chloride media. ECS Trans., 2014, 58(31): 1.

[40]

Laycock NJ, Newman RC. Localised dissolution kinetics, salt films and pitting potentials. Corros. Sci., 1997, 39(10–11): 1771.

[41]

P. Reccagni, L.H. Guilherme, Q. Lu, M.F. Gittos, and D.L. Engelberg, Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld, Corros. Sci., 161(2019), art. No. 108198.

[42]

Cheng XQ, Wang Y, Li XG, Dong CF. Interaction between austein-ferrite phases on passive performance of 2205 duplex stainless steel. J. Mater. Sci. Technol., 2018, 34(11): 2140.

[43]

Cheng XQ, Wang Y, Dong CF, Li XG. The beneficial galvanic effect of the constituent phases in 2205 duplex stainless steel on the passive films formed in a 3.5% NaCl solution. Corros. Sci., 2018, 134, 122.

[44]

Örnek C, Lángberg M, Evertsson J, et al. In-situ synchrotron GIXRD study of passive film evolution on duplex stainless steel in corrosive environment. Corros. Sci., 2018, 141, 18.

[45]

Lott SE, Alkire RC. The role of inclusions on initiation of crevice corrosion of stainless steel: I. Experimental studies. J Electrochem. Soc., 1989, 136(4): 973.

[46]

Oldfield JW, Sutton WH. Crevice corrosion of stainless steels: II. experimental studies. Br. Corros. J., 1978, 13(3): 104.

[47]

Hu Q, Zhang GA, Qiu YB, Guo XP. The crevice corrosion behaviour of stainless steel in sodium chloride solution. Corros. Sci., 2011, 53(12): 4065.

[48]

Hu Q, Qiu YB, Guo XP, Huang JY. Crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl. Corros. Sci., 2010, 52(4): 1205.

[49]

Chen DX, Han EH, Wu XQ. Effects of crevice geometry on corrosion behavior of 304 stainless steel during crevice corrosion in high temperature pure water. Corros. Sci., 2016, 111, 518.

[50]

Karlberg G, Wranglen G. On the mechanism of crevice corrosion of stainless Cr steels. Corros. Sci., 1971, 11(7): 499.

[51]

Moayed MH, Laycock NJ, Newman RC. Dependence of the Critical Pitting Temperature on surface roughness. Corros. Sci., 2003, 45(6): 1203.

[52]

Tian WM, Li SM, Du N, Chen SB, Wu QY. Effects of applied potential on stable pitting of 304 stainless steel. Corros. Sci., 2015, 93, 242.

[53]

Laycock NJ, Moayed MH, Newman RC. Metastable pitting and the critical pitting temperature. J. Electrochem. Soc., 1998, 145(8): 2622.

[54]

C. Örnek, F. Léonard, S.A. McDonald, A. Prajapati, P.J. Withers, and D.L. Engelberg, Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires, npj Mater. Degrad., 2(2018), art. No. 10.

[55]

Al-Zahrani AM, Pickering HW. IR voltage switch in delayed crevice corrosion and active peak formation detected using a repassivation-type scan. Electrochim. Acta, 2005, 50(16–17): 3420.

[56]

Pickering HW. The role of electrode potential distribution in corrosion processes. Mater. Sci. Eng. A, 1995, 198(1–2): 213.

[57]

Kennell GF, Evitts RW, Heppner KL. A critical crevice solution and IR drop crevice corrosion model. Corros. Sci., 2008, 50(6): 1716.

[58]

Pickering HW. The significance of the local electrode potential within pits, crevices and cracks. Corros. Sci., 1989, 29(2–3): 325.

[59]

Wang S, Newman RC. Crevice corrosion of type 316L stainless steel in alkaline chloride solutions. Corrosion, 2004, 60(5): 448.

[60]

Aoki S, Yakuwa H, Mitsuhashi K, Sakai J. Dissolution behavior of a and y phases of a duplex stainless steel in a simulated crevice solution. ECS Trans., 2010, 25(37): 17.

[61]

Tsai WT, Chen JR. Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci., 2007, 49(9): 3659.

[62]

Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel, Mater. Des., 232(2023), art. No. 112145.

[63]

npj Mater. Degrad., 2019, 3(1) art. No. 13

[64]

Gaudet GT, Mo WT, Hatton TA, et al. Mass transfer and electrochemical kinetic interactions in localized pitting corrosion. Aiche J., 1986, 32(6): 949.

[65]

Burstein GT, Liu C, Souto RM, Vines SP. Origins of pitting corrosion. Corros. Eng. Sci. Technol., 2004, 39(1): 25.

[66]

Cavanaugh MK, Buchheit RG, Birbilis N. Modeling the environmental dependence of pit growth using neural network approaches. Corros. Sci., 2010, 52(9): 3070.

[67]

Frankel GS. Pitting corrosion of metals: A review of the critical factors. J. Electrochem. Soc., 1998, 145(6): 2186.

[68]

Yi Y, Cho P, Al Zaabi A, Addad Y, Jang C. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution. Corros. Sci., 2013, 74, 92.

[69]

Zhang XL, Jiang ZH, Yao ZP, Song Y, Wu ZD. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci., 2009, 51(3): 581.

[70]

Ghahari M, Krouse D, Laycock N, et al. Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters. Corros. Sci., 2015, 100, 23.

[71]

Laycock NJ, Krouse DP, Hendy SC, Williams DE. Computer simulation of pitting corrosion of stainless steels. Electrochem Soc. Interface, 2014, 23(4): 65.

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/