High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature
Yiqi Zhou , Sultan Mahmood , Dirk Lars Engelberg
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (12) : 2375 -2385.
High throughput screening of localised and general corrosion in type 2205 duplex stainless steel at ambient temperature
Bipolar electrochemistry is used to produce a linear potential gradient across a bipolar electrode (BPE), providing direct access to the anodic and cathodic reactions under a wide range of applied potentials. The occurrence of pitting corrosion, crevice corrosion, and general corrosion on type 2205 duplex stainless steel (DSS 2205) BPE has been observed at room temperature. The critical pit depth of 10–20 µm with a 55%–75% probability of pits developing into stable pits at potential from +0.9 to +1.2 V vs. OCP (open circuit potential) are measured. All pit nucleation sites are either within ferritic grains or at the interface between austenite and ferrite. The critical conditions for pitting and crevice corrosion are discussed with E pit (critical pitting potential) and E cre (critical crevice potential) decreasing from 0.87 and 0.80 V vs. OCP after 150 s of exposure to 0.84 and 0.76 V vs. OCP after 900 s of exposure, respectively. Pit growth kinetics under different applied bipolar potentials and exposure times have been obtained. The ferrite is shown to be more susceptible to general dissolution.
bipolar electrochemistry / duplex stainless steel / pitting corrosion / pit growth factor / crevice corrosion
| [1] |
A. Eden, K. Scida, N. Arroyo-Currás, J.C.T. Eijkel, C.D. Meinhart, and S. Pennathur, Discharging behavior of confined bipolar electrodes: Coupled electrokinetic and electrochemical dynamics, Electrochim. Acta, 330(2020), art. No. 135275. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Y.Q. Zhou, N. Stevens, and D.L. Engelberg, Corrosion electrochemistry with a segmented array bipolar electrode, Electrochim. Acta, 375(2021), art. No. 137668. |
| [10] |
Metals, 2020, 10(6) art. No. 794 |
| [11] |
Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, A novel high throughput electrochemistry corrosion test method: Bipolar electrochemistry, Curr. Opin. Electrochem., 39(2023), art. No. 101263. |
| [12] |
Y.Q. Zhou and D.L. Engelberg, Time-lapse observation of pitting corrosion in ferritic stainless steel under bipolar electrochemistry control, J. Electroanal. Chem., 899(2021), art. No. 115599. |
| [13] |
Y.Q. Zhou, A. Kablan, and D.L. Engelberg, Metallographic screening of duplex stainless steel weld microstructure with a bipolar electrochemistry technique, Mater. Charact., 169(2020), art. No. 110605. |
| [14] |
Y.Q. Zhou and D.L. Engelberg, Application of bipolar electrochemistry to assess the ambient temperature corrosion resistance of solution annealed type 2205 duplex stainless steel, Mater. Chem. Phys., 275(2022), art. No. 125183. |
| [15] |
|
| [16] |
Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Bipolar electrochemistry for high throughput screening of localised corrosion in stainless steel rebars, Constr. Build. Mater., 366(2023), art. No. 130174. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Y.Q. Zhou and D. Engelberg, Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments, Electrochem. Commun., 117(2020), art. No. 106779. |
| [21] |
|
| [22] |
Y.Q. Zhou, J.T. Qi, and D.L. Engelberg, On the application of bipolar electrochemistry for simulating galvanic corrosion behaviour of dissimilar stainless steels, Electrochem. Commun., 126(2021), art. No. 107023. |
| [23] |
Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Brass dezincification with a bipolar electrochemistry technique, Surf. Interfaces, 22(2021), art. No. 100865. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
K. Eguchi, T.L. Burnett, and D.L. Engelberg, X-ray tomographic characterisation of pitting corrosion in lean duplex stainless steel, Corros. Sci., 165(2020), art. No. 108406. |
| [39] |
|
| [40] |
|
| [41] |
P. Reccagni, L.H. Guilherme, Q. Lu, M.F. Gittos, and D.L. Engelberg, Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld, Corros. Sci., 161(2019), art. No. 108198. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
C. Örnek, F. Léonard, S.A. McDonald, A. Prajapati, P.J. Withers, and D.L. Engelberg, Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires, npj Mater. Degrad., 2(2018), art. No. 10. |
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
Y.Q. Zhou, S. Mahmood, and D.L. Engelberg, Application of bipolar electrochemistry to assess the corrosion resistance of solution annealed lean duplex stainless steel, Mater. Des., 232(2023), art. No. 112145. |
| [63] |
npj Mater. Degrad., 2019, 3(1) art. No. 13 |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
/
| 〈 |
|
〉 |