Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation
Xi Zhang , Yu Wang , Jiushuai Deng , Zhongyi Bai , Hongxiang Xu , Qingfeng Meng , Da Jin , Zhenwu Sun
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2147 -2156.
Effect of ammonium sulfate on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation
Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation. In this work, inductively coupled plasma optical emission spectrometer (ICP-OES) measurements, Visual MINTEQ calculation, X-ray photoelectron spectroscopy (XPS) analysis, time of flight secondary ion mass spectrometry (ToF-SIMS) analysis, and micro-flotation experiments were explored to systematically investigate the effect of ammonium sulfate ((NH4)2SO4) on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation. The results showed that (NH4)2SO4 exhibited a positive influence on hemimorphite sulfidation flotation. It was ascribed to the number of zinc components in the form of Zn2+ and [Zn(NH3) i]2+ (i = 1–4) increased in the flotation system after hemimorphite treatment with (NH4)2SO4, which was beneficial to its interaction with sulfur species in solution, resulting in a dense and stable zinc sulfide layer generated on the hemimorphite surface. [Zn(NH3) i]2+ participated in the sulfidation reaction of hemimorphite as a transition state. In addition, the sulfidation reaction of hemimorphite was accelerated by (NH4)2SO4. Thus, (NH4)2SO4 presents a vital role in promoting the sulfidation of hemimorphite.
hemimorphite / sulfidation / ammonium sulfate / zinc sulfide species / adsorption / flotation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Q. Zhang, S.M. Wen, Q.C. Feng, and Y.B. Liu, Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector, Miner. Eng., 163(2021), art. No. 106809. |
| [6] |
S. Zhang, S.M. Wen, Y.J. Xian, G.Y. Liang, and M.H. Li, Pb ion pre-modification enhances the sulfidization and floatability of smithsonite, Miner. Eng., 170(2021), art. No. 107003. |
| [7] |
Q.Y. Sheng, W.Z. Yin, B. Yang, H.R. Sun, and J. Yao, Efficiently separating malachite from talc using new collector famciclovir via reverse flotation, Miner. Eng., 174(2021), art. No. 107243. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
X. Zhang, J.S. Deng, Y. Wang, G.Y. Wang, and H.X. Xu, Novel insight into the lead sulfide species formed on hemimorphite surface during lead ions improved sulfidation, Colloids Surf. A, 653(2022), art. No. 129959. |
| [19] |
D.Q. Xing, Y.Q. Huang, C.S. Lin, W.R. Zuo, and R.D. Deng, Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification, Sep. Purif. Technol., 269(2021), art. No. 118769. |
| [20] |
|
| [21] |
|
| [22] |
X. Zhang, M.Z. Huangfu, J.S. Deng, et al., Surface characteristics and flotation behaviours of specularite as influenced by lead ion modification, Sep. Purif. Technol., 276(2021), art. No. 119384. |
| [23] |
X. Zhang, J.S. Deng, M.Z. Huangfu, et al., Novel insights into the influence of ferric ion as a surface modifier to enhance the floatability of specularite, Powder Technol., 398(2022), art. No. 117141. |
| [24] |
|
| [25] |
D.D. Wu, W.H. Ma, Y.B. Mao, et al, Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator, Sci. Rep., 7(2017), art. No. 2086. |
| [26] |
P.L. Shen, D.W. Liu, X.H. Xu, et al., Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Miner. Eng., 155(2020), art. No. 106300. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
S.J. Bai, P. Yu, Z. Ding, C.L. Li, Y.J. Xian, and S.M. Wen, Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies, Miner. Eng., 146(2020), art. No. 106115. |
| [38] |
|
| [39] |
W.J. Zhao, D.W. Liu, and Q.C. Feng, Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability, Miner. Eng., 152(2020), art. No. 106373. |
| [40] |
|
| [41] |
R.Z. Liu, B. Pei, Z.C. Liu, Y.W. Wang, J.L. Li, and D.W. Liu, Improved understanding of the sulfidization mechanism in amine flotation of smithsonite: An XPS, AFM and UV-Vis DRS study, Minerals, 10(2020), No. 4, art. No. 370. |
| [42] |
|
| [43] |
B. Luo, Q.J. Liu, J.S. Deng, S.M. Li, L. Yu, and H. Lai, Determining the lead-sulfur species formed on smithsonite surfaces during lead-ion enhanced sulfidation processing, Appl. Surf. Sci., 506(2020), art. No. 144628. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. |
| [51] |
|
/
| 〈 |
|
〉 |