Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques
Chaoqun Chu , Shunchuan Wu , Chaojun Zhang , Yongle Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1680 -1691.
Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques
The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks. Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent. The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types: tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.
anisotropic rock / failure mechanism / acoustic emission / digital image correlation / Brazilian test
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
S.Q. Yang, P.F. Yin, B. Li, and D.S. Yang, Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104435. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
N.D.J. Simpson, A. Stroisz, A. Bauer, A. Vervoort, and R.M. Holt, Failure mechanics of anisotropic shale during Brazilian tests, [in] Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, 2014. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
Z. Aliabadian, G. Zhao, and A. Russell, Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104073. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
L. Yang, M. Sharafisafa, and L.M. Shen, On the fracture mechanism of rock-like materials with interbedded hard-soft layers under Brazilian tests, Theor. Appl. Fract. Mech., 116(2021), art. No. 103102. |
| [21] |
|
| [22] |
Y.Y. Meng, H.W. Jing, X.W. Liu, Q. Yin, L. Zhang, and H.X. Liu, Experimental and numerical investigation on the effect of bedding plane properties on fracture behaviour of sandy mudstone, Theor. Appl. Fract. Mech., 114(2021), art. No. 102989. |
| [23] |
|
| [24] |
|
| [25] |
H. Wang, Y. Li, S.G. Cao, et al., Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I–II loading, Eng. Fract. Mech., 239(2020), art. No. 107299. |
| [26] |
X.W. Yang, X.P. Zhang, Q. Zhang, C.D. Li, and D.J. Wang, Study on the mechanisms of crack turning in bedded rock, Eng. Fract. Mech., 247(2021), art. No. 107630. |
| [27] |
|
| [28] |
C.B. Li, B.B. Zou, H.W. Zhou, and J. Wang, Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 4, art. No. 98. |
| [29] |
|
| [30] |
N. Wu, J.Y. Fu, Z.D. Zhu, and B. Sun, Experimental study on the dynamic behavior of the Brazilian disc sample of rock material, Int. J. Rock Mech. Min. Sci., 130(2020), art. No. 104326. |
| [31] |
Z.Y. Han, D.Y. Li, and X.B. Li, Experimental study on the dynamic behavior of sandstone with coplanar elliptical flaws from macro, meso, and micro viewpoints, Theor. Appl. Fract. Mech., 120(2022), art. No. 103400. |
| [32] |
|
| [33] |
B.X. Huang, L.H. Li, Y.F. Tan, R.L. Hu, and X. Li, Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale, J. Geophys. Res., 125(2020), No. 8, art. No. e2019JB017828. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
J. Li, J. Zhao, H.C. Wang, K. Liu, and Q.B. Zhang, Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests, Eng. Fract. Mech., 252(2021), art. No. 107817. |
| [42] |
R.J. Wu, H.B. Li, and D.P. Wang, Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads, Int. J. Impact Eng., 149(2021), art. No. 103790. |
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
Y.S. Zhao, C.C. Chen, S.C. Wu, P. Guo, and B.L. Li, Effects of 2D&3D nonparallel flaws on failure characteristics of brittle rock-like samples under uniaxial compression: Insights from acoustic emission and DIC monitoring, Theor. Appl. Fract. Mech., 120(2022), art. No. 103391. |
| [53] |
P. Guo, S.C. Wu, G. Zhang, and C.Q. Chu, Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions, Int. J. Rock Mech. Min. Sci., 144(2021), art. No. 104820. |
| [54] |
|
/
| 〈 |
|
〉 |