Technical factors affecting the performance of anion exchange membrane water electrolyzer
Xun Zhang , Yakang Li , Wei Zhao , Jiaxin Guo , Pengfei Yin , Tao Ling
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (11) : 2259 -2269.
Technical factors affecting the performance of anion exchange membrane water electrolyzer
Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.
hydrogen production / anion exchange membrane water electrolyzer / catalyst / membrane electrode assembly
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective, Adv. Energy Mater., 12(2022), No. 12, art. No. 2103559. |
| [8] |
Q.C. Xu, L.Y. Zhang, J.H. Zhang, et al., Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation, EnergyChem, 4(2022), No. 5, art. No. 100087. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
I. Vincent, E.C. Lee, and H.M. Kim, Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production, Sci. Rep., 11(2021), No. 1, art. No. 293. |
| [15] |
C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. |
| [16] |
|
| [17] |
|
| [18] |
Y.M. Dong, K. He, L. Yin, and A.M. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology, 18(2007), No. 43, art. No. 435602. |
| [19] |
Z. Li, Y. Zhang, Y. Feng, et al., Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions, Adv. Funct. Mater., 29(2019), No. 36, art. No. 1903444. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
R.A. Krivina, G.A. Lindquist, S.R. Beaudoin, et al., Anode catalysts in anion-exchange-membrane electrolysis without supporting electrolyte: Conductivity, dynamics, and ionomer degradation, Adv. Mater., 34(2022), No. 35, art. No. 2203033. |
| [25] |
|
| [26] |
|
| [27] |
J.J. Liu, Z.Y. Kang, D.G. Li, et al., Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance, J. Electrochem. Soc., 168(2021), No. 5, art. No. 054522. |
| [28] |
S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, and A.S. Arico, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis, Materials, 11(2018), No. 8, art. No. 1368. |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
E. Cossar, A.O. Barnett, F. Seland, R. Safari, G.A. Botton, and E.A. Baranova, Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis, J. Power Sources, 514(2021), art. No. 230563. |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
A. Kiessling, J.C. Fornaciari, G. Anderson, et al., Influence of supporting electrolyte on hydroxide exchange membrane water electrolysis performance: Anolyte, J. Electrochem. Soc., 168(2021), No. 8, art. No. 084512. |
| [40] |
|
| [41] |
J.K. Lee, C. Lee, and A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers, J. Power Sources, 437(2019), art. No. 226910. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
S. Maurya, A.S. Lee, D.G. Li, et al., On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group, J. Power Sources, 436(2019), art. No. 226866. |
| [47] |
X. Hu, Y.D. Huang, L. Liu, et al., Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability, J. Membr. Sci., 621(2021), art. No. 118964. |
/
| 〈 |
|
〉 |