Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa

Nursultan E. Sagatov , Tatyana B. Bekker , Yulia G. Vinogradova , Alexey V. Davydov , Ivan V. Podborodnikov , Konstantin D. Litasov

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1846 -1854.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1846 -1854. DOI: 10.1007/s12613-023-2647-0
Article

Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa

Author information +
History +
PDF

Abstract

Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba2Na3(B3O6)2F (P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba2Na3(B3O6)2F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba2Na3(B3O6)2F into the BaB2O4, NaBO2, and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’ DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba2Na3(B3O6)2F at 3 GPa and its decomposition into BaB2O4, NaBO2, and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba2Na3(B3O6)2F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB2O4.

Keywords

density functional theory / phase stability / borate / high pressure / Raman spectroscopy

Cite this article

Download citation ▾
Nursultan E. Sagatov, Tatyana B. Bekker, Yulia G. Vinogradova, Alexey V. Davydov, Ivan V. Podborodnikov, Konstantin D. Litasov. Experimental and ab initio study of Ba2Na3(B3O6)2F stability in the pressure range of 0–10 GPa. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(9): 1846-1854 DOI:10.1007/s12613-023-2647-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bekker TB, Kokh AE, Kononova NG, Fedorov PP, Kuznetsov SV. Crystal growth and phase equilibria in the BaB2O4–NaF system. Cryst. Growth Des, 2009, 9(9): 4060.

[2]

Wang X, Xia MJ, Li RK. A promising birefringent crystal Ba2Na3(B3O6)2F. Opt. Mater., 2014, 38, 6.

[3]

Zhang H, Zhang M, Pan SL, et al. Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des., 2015, 15(1): 523.

[4]

Bekker TB, Vedenyapin VN, Khamoyan AG. Birefringence of the new fluoride borates Ba2Na3[B3O6]2F and Ba7(BO3)4−yF2+3y in the Na, Ba, B//O, F quaternary reciprocal system. Mater. Res. Bull., 2017, 91, 54.

[5]

Antsygin VD, Mamrashev AA, Nikolaev NA, Potaturkin OI, Bekker TB, Solntsev VP. Optical properties of borate crystals in terahertz region. Opt. Commun, 2013, 309, 333.

[6]

Marezio M, Plettinger HA, Zachariasen WH. The bond lengths in the sodium metaborate structure. Acta Crystallogr., 1963, 16(7): 594.

[7]

Schneider W, Carpenter GB. Bond lengths and thermal parameters of potassium metaborate, K3B3O6. Acta Crystallogr. Sect. B, 1970, 26(8): 1189.

[8]

Schmid S, Schnick W. Rubidium metaborate, Rb3B3O6. Acta Crystallogr. C, 2004, 60(Pt7): i69.

[9]

Schläger M, Hoppe R. Darstellung und kristallstruktur von CsBO2. Z. Anorg. Allg. Chem., 1994, 620(11): 1867.

[10]

Mighell AD, Perloff A, Block S. The crystal structure of the high temperature form of Barium borate, BaOB2O3. Acta Crystallogr., 1966, 20(6): 819.

[11]

Crystals, 2017, 7(3) art. No. 93

[12]

Liebertz J. Struktur und kristallchemie von Ba2M(B3O6)2 mit M = Ca, Cd, Mg, Co and Ni. Z. Kristallogr. Cryst. Mater., 1984, 168(1–4): 293.

[13]

Sohr G, Többens DM, Schmedt auf der Günne J, Huppertz H. HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates. Chem. Eur. J., 2014, 20(51): 17059.

[14]

Phys. Rev. B, 2018, 98(17) art. No. 174109

[15]

Vitzthum D, Wurst K, Pann JM, Brüggeller P, Seibald M, Huppertz H. Exploration into the syntheses of gallium- and indiumborates under extreme conditions: M5B12O25(OH): Structure, luminescence, and surprising photocatalytic properties. Angew. Chem. Int. Ed., 2018, 57(35): 11451.

[16]

N.E. Sagatov, T.B. Bekker, I.V. Podborodnikov, and K.D. Litasov, First-principles investigation of pressure-induced structural transformations of barium borates in the BaO–B2O3–BaF2 system in the range of 0–10 GPa, Comput. Mater. Sci., 199(2021), art. No. 110735.

[17]

Bekker TB, Podborodnikov IV, Sagatov NE, et al. γ-BaB2O4: High-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra. Inorg. Chem, 2022, 61(4): 2340.

[18]

Huppertz H, von der Eltz B. Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra. J. Am. Chem. Soc., 2002, 124(32): 9376.

[19]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169.

[20]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758.

[21]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[22]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[23]

J. Chem. Phys., 2006, 125(22) art. No. 224106

[24]

V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033.

[25]

Aquino FW, Shinde R, Wong BM. Fractional occupation numbers and self-interaction correction-scaling methods with the Fermi-Löwdin orbital self-interaction correction approach. J. Comput. Chem., 2020, 41(12): 1200.

[26]

Janesko BG. Replacing hybrid density functional theory: Motivation and recent advances. Chem. Soc. Rev, 2021, 50(15): 8470.

[27]

J. Phys.: Condens. Matter, 2021, 33(11) art. No. 115501

[28]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scr. Mater., 2015, 108, 1.

[29]

A. Fonari and S. Stauffer, Vasp_raman.py, 2013 [2016-09-21]. https://github.com/raman-sc.

[30]

Q.J. Zheng, VaspVib2XSF, 2020 [2022-11-08]. https://github.com/QijingZheng/VaspVib2XSF.

[31]

Modelling Simul. Mater. Sci. Eng., 2010, 18(1) art. No. 015012

[32]

Leger JM, Haines J, Atouf A, Schulte O, Hull S. High-pressure X-ray- and neutron-diffraction studies of BaF2: An example of a coordination number of 11 in AX2 compounds. Phys. Rev. B, 1995, 52(18): 13247.

[33]

Acta Crystallogr., 1961, 14(7) art. No. 794

[34]

Fang SM. The crystal structure of sodium metaborate Na3(B3O6). Z. Kristallogr. Cryst. Mater., 1938, 99(1–6): 1.

[35]

Phys. Rev. B, 2014, 90(22) art. No. 224104

[36]

Bekker TB, Inerbaev TM, Yelisseyev AP, et al. Experimental and ab initio studies of intrinsic defects in “antizeolite” borates with a Ba12(BO3)6 6+ framework and their influence on properties. Inorg. Chem., 2020, 59(18): 13598.

[37]

Wu C, Song JL, Li LH, Humphrey MG, Zhang C. Alkali metal-alkaline earth metal borate crystal LiBa3(OH) (B9O16)[B(OH)4]as a new deep-UV nonlinear optical material. J. Mater. Chem. C, 2016, 4(35): 8189.

[38]

APL Mater., 2013, 1(1) art. No. 011002

[39]

Wan SM, Zhang XA, Zhao SJ, et al. Growth units and growth habit of α-BaB2O4 crystal. J. Appl. Crystallogr., 2007, 40(4): 725.

[40]

Lv XS, Sun YL, Han J, et al. Growth and Raman spectrum of Ba2Mg(B3O6)2 crystal. J. Cryst. Growth, 2013, 363, 220.

[41]

Ney P, Fontana MD, Maillard A, Polgár K. Assignment of the Raman lines in single crystal barium metaborate. J. Phys.: Condens. Matter, 1998, 10(3): 673.

[42]

Voronko YK, Sobol AA, Shukshin VE. Structure of boron–oxygen groups in crystalline, molten, and glassy alkalimetal and alkaline-earth metaborates. Inorg. Mater., 2012, 48(7): 732.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/