Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes
Qinghai Ma , Guangsheng Liu , Xiaocong Yang , Lijie Guo
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (8) : 1490 -1501.
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes. This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes, where many factors can have significant effects on the consolidation, including drainage condition and cement addition. In this paper, the prepared tailings slurry with different cement contents (0, 4.76wt%, and 6.25wt%) was poured into 1.2 m-high columns, which allowed three drainage scenarios (undrained, partial lateral drainage near the bottom part, and full lateral drainage boundaries) to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry. The consolidation behavior was analyzed in terms of pore water pressure (PWP), settlement, volume of drainage water, and residual water content. The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation. In addition, constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition. The final stable PWP on the column floor was not sensitive to cement addition. The final settlement of uncemented tailings slurry was independent of drainage conditions, and that of cemented tailings slurry decreased with the increase in cement addition. Notably, more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation.
tailings backfill / consolidation / slurry drainage / cement content / physical model test
| [1] |
G.D. Lu, X.G. Yang, S.C. Qi, G. Fan, and J.W. Zhou, Coupled chemo-hydro-mechanical effects in one-dimensional accretion of cemented mine fills, Eng. Geol., 267(2020), art. No. 105495. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
A. Fourie, M. Helinski, and M. Fahey, Optimising the use of cemented backfill by using an effective stress constitutive model, [in] Proceedings of the Fourth International Seminar on Deep and High Stress Mining, Perth, 2007, p. 425. |
| [8] |
M.D. Bonin, M. Nuth, A.M. Dagenais, and A.R. Cabral, Experimental study and numerical reproduction of self-weight consolidation behavior of thickened tailings, J. Geotech. Geoenviron. Eng., 140(2014), No. 12, art. No. 04014068. |
| [9] |
|
| [10] |
J. Zheng, L. Li, and Y.C. Li, Solutions to estimate the excess PWP, settlement and volume of draining water after slurry deposition. Part I: Impervious base, Environ. Earth Sci., 79(2020), No. 6, art. No. 124. |
| [11] |
J. Zheng, L. Li, and Y.C. Li, Solutions to estimate the excess PWP, settlement and volume of draining water after slurry deposition. Part II: Pervious base, Environ. Earth Sci., 79(2020), No. 11, art. No. 275. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
M.W. Grabinsky, In situ monitoring for ground truthing paste backfill designs, [in] Proceedings of the Thirteenth International Seminar on Paste and Thickened Tailings, Toronto, 2010, p. 85. |
| [28] |
B.D. Thompson, M.W. Grabinsky, W.F. Bawden, and D.B. Counter, In-situ measurements of cemented paste backfill in long-hole stopes, [in] Proceedings of the 3rd Canada-US Rock Mechanics Symposium, Toronto, 2009, p. 197. |
| [29] |
T. Belem, A. Harvey, R. Simon, and M. Aubertin, Measurement and prediction of internal stresses in an underground opening during its filling with cemented fill, [in] 5th International Symposium on Ground Support in Mining and Underground Construction, Perth, 2004, p. 619. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
F. Saleh-Mbemba and M. Aubertin, Characterization of self-weight consolidation of fine-grained mine tailings using moisture sensors, Geotech. Test. J., 41(2018), No. 3, art. No. 20170035. |
| [35] |
|
| [36] |
T. Belem, O. El Aatar, B. Bussière, and M. Benzaazoua, Gravity-driven 1-D consolidation of cemented paste backfill in 3-m-high columns, Innov. Infrastructure Solut., 1(2016), No. 1, art. No. 37. |
| [37] |
T. Belem, O. El Aatar, B. Bussiere, M. Benzaazoua, M. Fall, and E. Yilmaz, Characterisation of self-weight consolidated paste backfill, [in] Paste 2006: Proceedings of the Ninth International Seminar on Paste and Thickened Tailings, Perth, 2006, p. 333.. |
| [38] |
M. Nujaim, T. Belem, and A. Giraud, Experimental tests on a small-scale model of a mine stope to study the behavior of waste rock barricades during backfilling, Minerals, 10(2020), No. 11, art. No. 941. |
| [39] |
|
| [40] |
|
| [41] |
M. Shahsavari and M. Grabinsky, Cemented paste backfill consolidation with deposition-dependent boundary conditions, [in] Proceedings of the 67th Canadian Geotechnical Conference, Regina, 2014. |
/
| 〈 |
|
〉 |