Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review

Na Xiao , Xu Guan , Dong Wang , Haile Yan , Minghui Cai , Nan Jia , Yudong Zhang , Claude Esling , Xiang Zhao , Liang Zuo

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1667 -1679.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1667 -1679. DOI: 10.1007/s12613-023-2641-6
Invited Review

Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review

Author information +
History +
PDF

Abstract

Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μ phase, σ phase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO3 film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure, mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs.

Keywords

high-entropy alloys / lattice distortion / W doping / mechanical property / precipitation

Cite this article

Download citation ▾
Na Xiao, Xu Guan, Dong Wang, Haile Yan, Minghui Cai, Nan Jia, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(9): 1667-1679 DOI:10.1007/s12613-023-2641-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi PJ, Li RG, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912.

[2]

Lu YP, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys. Scripta Mater., 2020, 187, 202.

[3]

Lei ZF, Liu XJ, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546.

[4]

H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180.

[5]

Zhou JH, Shen YF, Jia N. Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review. Int. J. Miner. Metall. Mater., 2021, 28(3): 335.

[6]

H.L. Yan, X.M. Huang, and C. Esling, Recent progress in crystallographic characterization, magnetoresponsive and elastocaloric effects of Ni–Mn–In–based heusler alloys—A review, Front. Mater., 9(2022), art. No. 812984.

[7]

Liu HX, Yan HL, Jia N, et al. Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys. J. Mater. Sci. Technol., 2022, 131, 1.

[8]

Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[9]

Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[10]

Wei Y, Fu Y, Pan ZM, et al. Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review. Int. J. Miner. Metall. Mater., 2021, 28(6): 915.

[11]

Shojaei Z, Khayati GR, Darezereshki E. Review of electrodeposition methods for the preparation of high-entropy alloys. Int. J. Miner. Metall. Mater., 2022, 29(9): 1683.

[12]

Cheng Z, Wang SZ, Wu GL, Gao JH, Yang XS, Wu HH. Tribological properties of high-entropy alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(3): 389.

[13]

Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[14]

P.J. Shi, W.L. Ren, T.X. Zheng, et al., Enhanced strengthductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun., 10(2019), art. No. 489.

[15]

Nagase T, Anada S, Rack PD, et al. Electron-irradiation-induced structural change in Zr-Hf-Nb alloy. Intermetallics, 2012, 26, 122.

[16]

Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20 Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698.

[17]

B. Cantor, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120(2021), art. No. 100754.

[18]

Z.W. Wang, W.J. Lu, F.C. An, et al., High stress twinning in a compositionally complex steel of very high stacking fault energy, Nat. Commun., 13(2022), No. 1, art. No. 3598.

[19]

He MY, Jia N, Liu XC, Shen YF, Zuo L. Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation. J. Mater. Sci. Technol., 2022, 113, 287.

[20]

He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater., 2016, 102, 187.

[21]

Tariq NH, Naeem M, Hasan BA, Akhter JI, Siddique M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd., 2013, 556, 79.

[22]

Dong Y, Lu YP. Effects of tungsten addition on the micro-structure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy. J. Mater. Eng. Perform., 2018, 27(1): 109.

[23]

Malatji N, Lengopeng T, Pityana S, Popoola API. Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys. J. Mater. Res. Technol., 2021, 11, 1594.

[24]

Kumar D, Sharma VK, Prasad YVSS, Kumar V. Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0, 0.05, 0.1, 0.5) high-entropy alloys. J. Mater. Res., 2019, 34(5): 767.

[25]

Wei SL, Tasan CC. Deformation faulting in a metastable CoCrNiW complex concentrated alloy: A case of negative intrinsic stacking fault energy?. Acta Mater., 2020, 200, 992.

[26]

Chang RB, Fang W, Bai X, et al. Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J. Alloys Compd., 2019, 790, 732.

[27]

Wu ZG, Guo W, Jin K, Poplawsky JD, Gao YF, Bei HB. Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy. J. Mater. Res., 2018, 33(19): 3301.

[28]

Chen YJ, Fang Y, Fu XQ, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy. J. Mater. Sci. Technol., 2021, 73, 101.

[29]

L. Zhang, X.F. Huo, A.G. Wang, et al., A ductile high entropy alloy strengthened by nano sigma phase, Intermetallics, 122(2020), art. No. 106813.

[30]

L. Zhang, L. Zhang, H. Wang, et al., Evolution of the microstructure and mechanical properties of an sigma-hardened highentropy alloy at different annealing temperatures, Mater. Sci. Eng. A, 831(2022), art. No. 142140.

[31]

H. Ma, Y. Shao, and C.H. Shek, CoCuFeNi high entropy alloy reinforced by in situ W particles, Mater. Sci. Eng. A, 797(2020), art. No. 140218.

[32]

Jiang H, Jiang L, Han KM, et al. Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V05Wx high-entropy alloys. J. Mater. Eng. Perform., 2015, 24(12): 4594.

[33]

Z.Z. Niu, J. Xu, T. Wang, N.R. Wang, Z.H. Han, and Y. Wang, Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x = 0, 0.2, 0.5) high entropy alloys, Intermetallics, 112(2019), art. No. 106550.

[34]

Poletti MG, Fiore G, Gili F, Mangherini D, Battezzati L. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater. Des., 2017, 115, 247.

[35]

Tsai MH, Fan AC, Wang HG. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys. J. Alloys Compd., 2017, 695, 1479.

[36]

L. Wang, L. Wang, Y.C. Tang, et al., Microstructure and mechanical properties of CoCrFeNiWx high entropy alloys reinforced by μ phase particles, J. Alloys Compd., 843(2020), art. No. 155997.

[37]

A.C. Fan, J.H. Li, and M.H. Tsai, On the phase constituents of three CoCrFeNiX (X = Cr, Mo, W) high-entropy alloys after prolonged annealing, Mater. Chem. Phys., 276(2022), art. No. 125431.

[38]

V.K. Soni, S. Sanyal, and S.K. Sinha, Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys, Intermetallics, 132(2021), art. No. 107161.

[39]

J.J. Yang, C.J. Liang, C.L. Wang, et al., Improving mechanical properties of (Co1.5FeNi)88.5Ti6Al4R1.5 (R = Hf, W, Nb, Ta, Mo, V) multi-component high-entropy alloys via multi-stage strain hardening strengthening, Mater. Des., 222(2022), art. No. 111061.

[40]

Liu WH, Lu ZP, He JY, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater., 2016, 116, 332.

[41]

Miao JW, Guo TM, Ren JF, Zhang AJ, Su B, Meng JH. Optimization of mechanical and tribological properties of FCC CrCoNi multi-principal element alloy with Mo addition. Vacuum, 2018, 149, 324.

[42]

R. Fan, L.P. Wang, L.L. Zhao, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153.

[43]

Lu WJ, Luo XA, Yang YQ, Huang B. Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy. Mater. Express, 2019, 9(4): 291.

[44]

U. Sunkari, S.R. Reddy, B.D.S. Rathod, et al., Heterogeneous precipitation mediated heterogeneous nanostructure enhances strength-ductility synergy in severely cryo-rolled and annealed CoCrFeNi2.1Nb0.2 high entropy alloy, Sci. Rep., 10(2020), No. 1, art. No. 6056.

[45]

H. Jiang, L. Li, Z.L. Ni, D.X. Qiao, Q. Zhang, and H.M. Sui, Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy, Mater. Chem. Phys., 290(2022), art. No. 126631.

[46]

Huang S, Li W, Eriksson O, Vitos L. Chemical ordering controlled thermo-elasticity of AlTiVCr1−xNbx high-entropy alloys. Acta Mater., 2020, 199, 53.

[47]

Du Y, Pei XH, Tang ZW, et al. Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys. J. Mater. Sci. Technol., 2021, 90, 194.

[48]

Maresca F, Curtin WA. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater., 2020, 182, 235.

[49]

W.N. Jiao, J.W. Miao, Y.P. Lu, et al., Designing CoCrFeNi-M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method, J. Alloys Compd., 941(2023), art. No. 168975.

[50]

Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J. Alloys Compd., 2018, 735, 2653.

[51]

C. Ai, G.X. Wang, L. Liu, et al., Effect of Ta addition on solidification characteristics of CoCrFeNiTax eutectic high entropy alloys, Intermetallics, 120(2020), art. No. 106769.

[52]

B. Chanda, S.K. Pani, and J. Das, Mechanism of microstructure evolution and spheroidization in ultrafine lamellar CoCrFeNi(Nb0.5/Ta0.4) eutectic high entropy alloys upon hot deformation, Mater. Sci. Eng. A, 835(2022), art. No. 142669.

[53]

Y. Yang, X.Y. Luo, T.X. Ma, L.Y. Wen, L.W. Hu, and M.L. Hu, Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process, J. Alloys Compd., 864(2021), art. No. 158717.

[54]

Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, 26, 44.

[55]

Jiang Z, Wei R, Wang WZ, et al. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying. J. Mater. Sci. Technol., 2022, 100, 20.

[56]

D. Kumar, O. Maulik, S. Kumar, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x = 0, 0.05, 0.1 and 0.5 mol) high entropy alloys, Mater. Res. Express, 4(2017), No. 11, art. No. 114004.

[57]

Kumar D, Maulik O, Bagri AS, Prasad YVSS, Kumar V. Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy. Mater. Today, 2016, 3(9): 2926.

[58]

Kumar D, Maulik O, Kumar S, Prasad YVSS, Kumar V. Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys., 2018, 210, 71.

[59]

Kumar D, Maulik O, Sharma VK, Prasad YVSS, Kumar V. Understanding the effect of tungsten on corrosion behavior of AlCuCrFeMnWx high-entropy alloys in 3.5 wt.% NaCl solution. J. Mater. Eng. Perform., 2018, 27(9): 4481.

[60]

M.Y. He, Y.F. Shen, N. Jia, and P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today, 25(2021), art. No. 101162.

[61]

L.Y. Liu, Y. Zhang, J.H. Han, et al., Nanoprecipitate-strengthened high-entropy alloys, Adv. Sci., 8(2021), No. 23, art. No. 2100870.

[62]

Inui H, Kishida K, Li L, Manzoni AM, Haas S, Glatzel U. Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys. MRS Bull., 2022, 47(2): 168.

[63]

Ibrahim PA, Özkul İ, Canbay CA. An overview of high-entropy alloys. Emergent Mater., 2022, 5(6): 1779.

[64]

J.J. Lian, X.G. Ma, Z.Y. Jiang, C.S. Lee, and J.W. Zhao, A review of the effect of tungsten alloying on the microstructure and properties of steels, Tungsten, (2022), p. 1.

[65]

Xie YC, Cheng H, Tang QH, Chen W, Chen WK, Dai PQ. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93, 228.

[66]

Qin G, Chen RR, Zheng HT, et al. Strengthening FCCCoCrFeMnNi high entropy alloys by Mo addition. J. Mater. Sci. Technol., 2019, 35(4): 578.

[67]

King HW. Quantitative size-factors for metallic solid solutions. J. Mater. Sci., 1966, 1(1): 79.

[68]

Yan HL, Liu HX, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: Insights from first-principles calculation. J. Mater. Sci. Technol., 2021, 74, 27.

[69]

Yan HL, Zhang YD, Esling C, Zhao X, Zuo L. Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization. Acta Mater., 2021, 202, 112.

[70]

Massalski TB, Mizutani U. Electronic structure of Hume-Rothery phases. Prog. Mater. Sci., 1978, 22(3–4): 151.

[71]

Jacob A, Schmetterer C, Singheiser L, Gray-Weale A, Hallstedt B, Watson A. Modeling of Fe-W phase diagram using first principles and phonons calculations. Calphad, 2015, 50, 92.

[72]

A.F. Sheykhlari, H. Arabi, S.M.A. Boutorabi, and C. Cayron, Effect of chromium content on microstructural evolution of CoNiAlW superalloy, Appl. Phys. A, 128(2022), No. 8, art. No. 719.

[73]

Okamoto H, Schlesinger ME, Mueller EM. Binary Alloy Phase Diagrams, 2016, Cleveland, ASM International

[74]

Chang RB, Fang W, Yu HY, et al. Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength-ductility synergy utilizing compositional inhomogeneity. Scripta Mater., 2019, 172, 144.

[75]

He ZF, Jia N, Wang HW, Yan HL, Shen YF. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature. J. Mater. Sci. Technol., 2021, 86, 158.

[76]

Z.F. He, N. Jia, H.L. Yan, et al., Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy, Int. J. Plast., 139(2021), art. No. 102965.

[77]

Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Mater., 2013, 68(7): 526.

[78]

Balyanov A. Corrosion resistance of ultra fine-grained Ti. Scripta Mater., 2004, 51(3): 225.

[79]

Qiu Y, Gibson MA, Fraser HL, Birbilis N. Corrosion characteristics of high entropy alloys. Mater. Sci. Technol., 2015, 31(10): 1235.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/