Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review

Brett Holmberg , Liang Cui

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (8) : 1474 -1489.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (8) : 1474 -1489. DOI: 10.1007/s12613-023-2640-7
Invited Review

Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review

Author information +
History +
PDF

Abstract

The mesoscale fiber–matrix interfacial transition zone (FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites (FRCCs). This critical review establishes the link among induced curing pressure (i.e., external loading condition), multiphysics processes (i.e., internal governing mechanism), and interface behavior (i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FM-ITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.

Keywords

cemented paste backfill / cementitious composites / interfacial transition zone / fiber reinforcement / multiphysics / induced curing pressure

Cite this article

Download citation ▾
Brett Holmberg, Liang Cui. Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(8): 1474-1489 DOI:10.1007/s12613-023-2640-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu D, Zhao RK, Xie CW, Liu S. Effect of curing humidity on performance of cemented paste backfill. Int. J. Miner. Metall. Mater., 2020, 27(8): 1046.

[2]

Wu AX, Ruan ZE, Wang JD. Rheological behavior of paste in metal mines. Int. J. Miner. Metall. Mater., 2022, 29(4): 717.

[3]

Zhou Q, Liu JH, Wu AX, Wang HJ. Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials. Int. J. Miner. Metall. Mater., 2020, 27(9): 1191.

[4]

Cao S, Song WD, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr. Build. Mater., 2018, 174, 190.

[5]

D. Deb and S. Jain, Compaction-based analytical stress model for 3D inclined backfilled stopes, Int. J. Geomech., 18(2018), No. 4, art. No. 04018009.

[6]

S.H. Yin, Y.Q. Hou, X. Chen, M.Z. Zhang, H.H. Du, and C. Gao, Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading, Constr. Build. Mater., 332(2022), art. No. 127248.

[7]

K.H. Tan, J. Walraven, S. Grünewald, J. Rovers, and B. Cotovanu, Correlations among notched beam tests, double punch tests and round panel tests for a high performance fibre concrete cast at site, Cem. Concr. Compos., 122(2021), art. No. 104138.

[8]

Soleimani-Fard H, König D, Goudarzy M. Plane strain shear strength of unsaturated fiber-reinforced fine-grained soils. Acta Geotech., 2022, 17(1): 105.

[9]

Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005.

[10]

Li JJ, Cao S, Yilmaz E, Liu YP. Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites. Int. J. Miner. Metall. Mater., 2022, 29(2): 345.

[11]

T. Oh, I. You, N. Banthia, and D.Y. Yoo, Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete, Composites Part B, 221(2021), art. No. 109030.

[12]

Behforouz B, Balkanlou VS, Naseri F, Kasehchi E, Mohseni E, Ozbakkaloglu T. Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates. Int. J. Environ. Sci. Technol., 2020, 17(6): 3251.

[13]

Yang C, Yang P, Lv WS, Wang ZK. Mechanical performance of confined consolidation on the strength development of cemented paste backfill. Geotech. Geol. Eng., 2020, 38(2): 1097.

[14]

Roig-Flores M, Šimičević F, Maričić A, Serna P, Horvat M. Interfacial transition zone in mature fiber-reinforced concretes. ACI Mater. J., 2018, 115(4): 623.

[15]

Baji H, Li CQ. An analytical solution for hydraulic conductivity of concrete considering properties of the interfacial transition zone (ITZ). Cem. Concr. Compos., 2018, 91, 1.

[16]

Xu LH, Deng FQ, Chi Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Constr. Build. Mater., 2017, 145, 619.

[17]

Q.N. Wang, G.S. Zhang, Y.Y. Tong, and C.P. Gu, Prediction on permeability of engineered cementitious composites, Crystals, 11(2021), No. 5, art. No. 526.

[18]

J. Nemecek, P. Kabele, and Z. Bittnar, Nanoindentation based assessment of micromechanical properties of fiber reinforced cementitious composite, [in] Proceedings of the 6th International RILEM Symposium on Fibre Reinforced Concretes, Varenna, 2004, p. 401.

[19]

Zacharda V, Štemberk P, Němeček J. Nanomechanical performance of interfacial transition zone in fiber reinforced cement matrix. Key Eng. Mater., 2018, 760, 251.

[20]

Teixeira RS, Tonoli GHD, Santos SF, et al. Nanoindentation study of the interfacial zone between cellulose fiber and cement matrix in extruded composites. Cem. Concr. Compos., 2018, 85, 1.

[21]

L. Li, Z.L. Li, M.L. Cao, Y. Tang, and Z. Zhang, Nanoindentation and porosity fractal dimension of calcium carbonate whisker reinforced cement paste after elevated temperatures (up to 900°c), Fractals, 29(2021), No. 2, art. No. 2140001.

[22]

J.H. Han, D.C. Huang, J.Y. Chen, and X.F. Lan, Experiment study and finite element analysis of the coupling effect of steel fiber length and coarse aggregate maximum size on the fracture properties of concrete, Crystals, 11(2021), No. 8, art. No. 850.

[23]

Zhang JL, Liu X, Yuan Y, Mang HA. Multiscale modeling of the effect of the interfacial transition zone on the modulus of elasticity of fiber-reinforced fine concrete. Comput. Mech., 2015, 55(1): 37.

[24]

Qian X, Shen B, Mu B, Li Z. Enhancement of aging resistance of glass fiber reinforced cement. Mater. Struct., 2003, 36(5): 323.

[25]

Wang YC, Wei LZ, Yu JT, Yu KQ. Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking. Cem. Concr. Compos., 2019, 97, 248.

[26]

T. Zhang, Y. Zhang, H.H. Zhu, and Z.G. Yan, Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures, Compos. Struct., 256(2021), art. No. 112988.

[27]

Flatt RJ, Scherer GW, Bullard JW. Why alite stops hydrating below 80% relative humidity. Cem. Concr. Res., 2011, 41(9): 987.

[28]

Zhou A, Wei HN, Liu TJ, Zou DJ, Li Y, Qin RY. Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale. Nanotechnol. Rev., 2021, 10(1): 636.

[29]

Cheng JS, Li T, Liu XQ, Zhao LH. A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures. Int. J. Numer. Anal. Methods Geomech., 2016, 40, 487.

[30]

Mayoral JM, Romo MP. Seismic response of bridges with massive foundations. Soil Dyn. Earthq. Eng., 2015, 71, 88.

[31]

E.O.L. Lantsoght, How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups? Composites Part B, 175(2019), art. No. 107079.

[32]

Ellingwood BR, Mori Y. Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants. Nucl. Eng. Des., 1993, 142(2–3): 155.

[33]

Choobbasti AJ, Kutanaei SS, Ghadakpour M. Shear behavior of fiber-reinforced sand composite. Arab. J. Geosci., 2019, 12(5): 1.

[34]

S. Abdallah, M.Z. Fan, and D.W.A. Rees, Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview, J. Mater. Civ. Eng., 30(2018), No. 3, art. No. 04018001.

[35]

Dube A. Fiber Reinforced Concrete: Characterization of Flexural Toughness & Some Studies on Fiber-Matrix Bond-Slip Interaction, 1999, Vancouver, BC, University of British Columbia [Dissertation]

[36]

Dalalbashi A, Ghiassi B, Oliveira DV, Freitas A. Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling. Composites Part B, 2018, 143, 250.

[37]

T.A. Liu, R.X. Bai, Z.T. Chen, Y.Z. Li, and Y.Z. Yang, Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite, Constr. Build. Mater., 278(2021), art. No. 122263.

[38]

Jiao HZ, Chen WL, Wu AX, et al. Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell. Int. J. Miner. Metall. Mater., 2022, 29(12): 2126.

[39]

A. Perrot and D. Rangeard, Effects of mix design parameters on consolidation behaviour of fresh cement-based materials, Mater. Struct., 50(2017), No. 2, art. No. 117.

[40]

Y.L. Ji, L. Pel, and Z.P. Sun, The microstructure development during bleeding of cement paste: An NMR study, Cem. Concr. Res., 125(2019), art. No. 105866.

[41]

Cui L, Fall M. Numerical simulation of consolidation behavior of large hydrating fill mass. Int. J. Concr. Struct. Mater., 2020, 14(1): 23.

[42]

Yazıcı H, Deniz E, Baradan B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Constr. Build. Mater., 2013, 42, 53.

[43]

Alwesabi EAH, Bakar BHA, Alshaikh IMH, Zeyad AM, Altheeb A, Alghamdi H. Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber. Structures, 2021, 33, 4421.

[44]

Lee SF, Jacobsen S. Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar. Mater. Struct., 2011, 44(8): 1451.

[45]

Jewell RB. Influence of Calcium Sulfoaluminate Cement on the Pullout Performance of Reinforcing Fibers: An Evaluation of the Micro-mechanical Behavior, 2015, Lexington, Kentucky, University of Kentucky [Dissertation]

[46]

Y. Zhang, J.W. Ju, Q. Chen, Z.G. Yan, H.H. Zhu, and Z.W. Jiang, Characterizing and analyzing the residual interfacial behavior of steel fibers embedded into cement-based matrices after exposure to high temperatures, Composites Part B, 191(2020), art. No. 107933.

[47]

Helmi M, Hall MR, Stevens LA, Rigby SP. Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation. Constr. Build. Mater., 2016, 105, 554.

[48]

Ye G, Lura P, van Breugel K. Modelling of water permeability in cementitious materials. Mater. Struct., 2006, 39(9): 877.

[49]

Wang Y, Wu AX, Ruan ZE, et al. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process. Int. J. Miner. Metall. Mater., 2020, 27(11): 1430.

[50]

Ghirian A, Fall M. Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage. Int. J. Min. Sci. Technol., 2016, 26(5): 809.

[51]

S. Chakilam and L. Cui, Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill, Constr. Build. Mater., 262(2020), art. No. 120854.

[52]

Festugato L, Fourie A, Consoli NC. Cyclic shear response of fibre-reinforced cemented paste backfill. Geotech. Lett., 2013, 3(1): 5.

[53]

Yim HJ, Kim JH, Kwak HG, Kim JK. Evaluation of internal bleeding in concrete using a self-weight bleeding test. Cem. Concr. Res., 2013, 53, 18.

[54]

E.M. Jaouhar and L. Li, Effect of drainage and consolidation on the pore water pressures and total stresses within backfilled stopes and on barricades, Adv. Civ. Eng., 2019(2019), art. No. 1802130.

[55]

Kumar KR, Shyamala G, Adesina A. Structural performance of corroded reinforced concrete beams made with fiber-reinforced self-compacting concrete. Structures, 2021, 32, 1145.

[56]

N.F. Liu, L.A. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548.

[57]

Cui LA, Fall M. Modeling of self-desiccation in a cemented backfill structure. Int. J. Numer. Anal. Methods Geomech., 2018, 42(3): 558.

[58]

N. Lu, Generalized soil water retention equation for adsorption and capillarity, J. Geotech. Geoenviron. Eng., 142(2016), No. 10, art. No. 04016051.

[59]

Simms P, Grabinsky M. Direct measurement of matric suction in triaxial tests on early-age cemented paste backfill. Can. Geotech. J., 2009, 46(1): 93.

[60]

van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 1980, 44(5): 892.

[61]

Y.S. Yao, J.J. Ni, and J. Li, Stress-dependent water retention of granite residual soil and its implications for ground settlement, Comput. Geotech., 129(2021), art. No. 103835.

[62]

Fredlund DG, Xing AQ. Equations for the soil-water characteristic curve. Can. Geotech. J., 1994, 31(4): 521.

[63]

Webb SW. A simple extension of two-phase characteristic curves to include the dry region. Water Resour. Res., 2000, 36(6): 1425.

[64]

Ross PJ, Williams J, Bristow KL. Equation for extending water-retention curves to dryness. Soil Sci. Soc. Am. J., 1991, 55(4): 923.

[65]

R.G. Gao, K.P. Zhou, W. Liu, and Q.F. Ren, Correlation between the pore structure and water retention of cemented paste backfill using centrifugal and nuclear magnetic resonance methods, Minerals, 10(2020), No. 7, art. No. 610.

[66]

I.L.S. Libos, L. Cui, and X.R. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater., 311(2021), art. No. 125302.

[67]

I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174.

[68]

Jiang LC, Yang C, Jiao HZ. Ultimately exposed roof area prediction of bauxite deposit goaf based on macro joint damage. Int. J. Min. Sci. Technol., 2020, 30(5): 699.

[69]

Shiozawa S, Campbell GS. Soil thermal conductivity. Remote Sens. Rev., 1990, 5(1): 301.

[70]

Leach AG. The thermal conductivity of foams. I. Models for heat conduction. J. Phys. D: Appl. Phys., 1993, 26(5): 733.

[71]

Judge AS. The Thermal Regime of the Mackenzie Valley: Observations of the Natural State, 1973, Ottawa, Environmental-Social Committee, Northern Pipelines, Task Force on Northern Oil Development.

[72]

Woodside W, Messmer JH. Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys., 1961, 32(9): 1688.

[73]

V.R. Tarnawski and W.H. Leong, Advanced geometric mean model for predicting thermal conductivity of unsaturated soils, Int. J. Thermophys., 37(2016), No. 2, art. No. 18.

[74]

Lu S, Ren TS, Gong YS, Horton R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J., 2007, 71(1): 8.

[75]

Chen SX. Thermal conductivity of sands. Heat Mass Transfer, 2008, 44(10): 1241.

[76]

Lu YL, Lu S, Horton R, Ren TS. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Sci. Soc. Am. J., 2014, 78(6): 1859.

[77]

Alrtimi A, Rouainia M, Haigh S. Thermal conductivity of a sandy soil. Appl. Therm. Eng., 2016, 106, 551.

[78]

He S, Li Z, Yang E H. Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste. Cem. Concr. Res., 2019, 122, 136.

[79]

Belkharchouche D, Chaker A. Effects of moisture on thermal conductivity of the lightened construction material. Int. J. Hydrogen Energy, 2016, 41(17): 7119.

[80]

Likos WJ. Pore-scale model for thermal conductivity of unsaturated sand. Geotech. Geol. Eng., 2015, 33(2): 179.

[81]

Zhou Q, Beaudoin JJ. Effect of applied hydrostatic stress on the hydration of Portland cement and C3S. Adv. Cem. Res., 2003, 15(1): 9.

[82]

Neville AM. Creep of Concrete: Plain, Reinforced, and Prestressed, 1971, Amsterdam, Elsevier.

[83]

G. Goracci, M. Monasterio, H. Jansson, and S. Cerveny, Dynamics of nano-confined water in Portland cement - comparison with synthetic C-S-H gel and other silicate materials, Sci. Rep., 7(2017), art. No. 8258.

[84]

T. Honorio, F. Masara, and F. Benboudjema, Heat capacity, isothermal compressibility, isosteric heat of adsorption and thermal expansion of water confined in C-S-H, Cement, 6(2021), art. No. 100015.

[85]

Garofalini SH, Mahadevan TS, Xu SY, Scherer GW. Molecular mechanisms causing anomalously high thermal expansion of nanoconfined water. ChemPhysChem, 2008, 9(14): 1997.

[86]

Mindess S, Young JF, Darwin D. Concrete, 2003, 2 Upper Saddle River, Prentice Hall.

[87]

N. Zhang, X.B. Yu, A. Pradhan, and A.J. Puppala, Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction, J. Mater. Civ. Eng., 27(2015), No. 12, art. No. 04015059.

[88]

Sakyi-Bekoe KO. Assessment of the Coefficient of Thermal Expansion of Alabama Concrete, 2008, Auburn, Alabama, Auburn University [Dissertation]

[89]

Kömle NI, Hütter ES, Feng WJ. Thermal conductivity measurements of coarse-grained gravel materials using a hollow cylindrical sensor. Acta Geotech., 2010, 5(4): 211.

[90]

Neville AM, Brooks JJ. Concrete Technology, 1991, Essex, Longman Scientific & Technical.

[91]

Kant MA, Ammann J, Rossi E, Madonna C, Höser D, Rudolf von Rohr P. Thermal properties of Central Aare granite for temperatures up to 500°C: Irreversible changes due to thermal crack formation. Geophys. Res. Lett., 2017, 44(2): 771.

[92]

Mehta PK, Monteiro PJM. Concrete: Microstructure, Properties, and Materials, 2013, 4 New York, McGraw Hill, 114.

[93]

Selvadurai APS, Rezaei Niya SM. Effective thermal conductivity of an intact heterogeneous limestone. J. Rock Mech. Geotech. Eng., 2020, 12(4): 682.

[94]

O.A. Balogun, A.A. Akinwande, A.A. Adediran, P.P. Ikubanni, S.A. Shittu, and O.S. Adesina, Experimental study on the properties of fired sand–2013;clay ceramic products for masonry applications, J. Mater. Civ. Eng., 33(2021), No. 2, art. No. 04020445.

[95]

Sellevold EJ, Bjøntegaard Ø. Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction. Mater. Struct., 2006, 39(9): 809.

[96]

Y.B. Du and Y. Ge, Multiphase model for predicting the thermal conductivity of cement paste and its applications, Materials, 14(2021), No. 16, art. No. 4525.

[97]

M.J.A. Qomi, F.J. Ulm, and R.J.M. Pellenq, Physical origins of thermal properties of cement paste, Phys. Rev. Appl., 3(2015), No. 6, art. No. 064010.

[98]

Ghabezloo S. Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste. Cem. Concr. Res., 2011, 41(5): 520.

[99]

Xu H, Zhao Y, Vogel SC, Daemen LL, Hickmott DD. Anisotropic thermal expansion and hydrogen bonding behavior of portlandite: A high-temperature neutron diffraction study. J. Solid State Chem., 2007, 180(4): 1519.

[100]

K.J. Krakowiak, R.G. Nannapaneni, A. Moshiri, et al., Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications, Cem. Concr. Compos., 108(2020), art. No. 103514.

[101]

Tripathi D. Practical Guide to Polypropylene, 2002, Shrewsbury, Shropshire, RAPRA Technology LTD.

[102]

Mark JE. Polymer Data Handbook, 2009, 2 New York, Oxford University Press.

[103]

Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer, 2004, 45(12): 4227.

[104]

Stolz J, Boluk Y, Bindiganavile V. Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete. Cem. Concr. Compos., 2018, 94, 24.

[105]

Wang YH. Study on High Temperature Behaviours of FRHPC Pipe Members, 2008, Dalian, Dalian University of Technology [Dissertation]

[106]

Zhang Y, Ju JW, Zhu HH, Guo QH, Yan ZG. Micromechanics based multi-level model for predicting the coefficients of thermal expansion of hybrid fiber reinforced concrete. Constr. Build. Mater., 2018, 190, 948.

[107]

H.G. Noh, H.C. Kang, M.H. Kim, and H.S. Park, Estimation model for effective thermal conductivity of reinforced concrete containing multiple round rebars, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 65.

[108]

T. Hassan, H. Jamshaid, R. Mishra, et al., Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste, Polymers, 12(2020), No. 3, art. No. 654.

[109]

Stapulionienė R, Vaitkus S, Vėjelis S, Sankauskaitė A. Investigation of thermal conductivity of natural fibres processed by different mechanical methods. Int. J. Precis. Eng. Manuf., 2016, 17(10): 1371.

[110]

Valenza JJ, Scherer GW. Evidence of anomalous thermal expansion of water in cement paste. Cem. Concr. Res., 2005, 35(1): 57.

[111]

Z.X. Zhao, C.Z. Sun, and R.F. Zhou, Thermal conductivity of confined-water in graphene nanochannels, Int. J. Heat Mass Transfer, 152(2020), art. No. 119502.

[112]

Wang XR, Shao H, Hesser J, Zhang CL, Wang WQ, Kolditz O. Numerical analysis of thermal impact on hydromechanical properties of clay. J. Rock Mech. Geotech. Eng., 2014, 6(5): 405.

[113]

Pang XY, Meyer C. Modeling cement hydration by connecting a nucleation and growth mechanism with a diffusion mechanism. Part II: Portland cement paste hydration. Sci. Eng. Compos. Mater., 2016, 23(6): 605.

[114]

R. Snellings, A. Machner, G. Bolte, et al., Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature, Cem. Concr. Res., 151(2022), art. No. 106647.

[115]

Bentz DP. Three-dimensional computer simulation of Portland cement hydration and microstructure development. J. Am. Ceram. Soc., 1997, 80(1): 3.

[116]

Bullard JW. A three-dimensional microstructural model of reactions and transport in aqueous mineral systems. Modell. Simul. Mater. Sci. Eng., 2007, 15(7): 711.

[117]

van Breugel K. Simulation of Hydration and Formation of Structure in Hardening Cement-based Materials, 1991, Delft, Delft University of Technology [Dissertation]

[118]

Jennings HM, Johnson SK. Simulation of microstructure development during the hydration of a cement compound. J. Am. Ceram. Soc., 1986, 69(11): 790.

[119]

Schindler A K, Folliard K J. Heat of hydration models for cementitious materials. ACI Mater. J., 2005, 102(1): 24.

[120]

Nakamura H, Hamada S, Tanimoto T, Miyamoto A. Estimation of thermal crack resistance for mass concrete structures with uncertain material properties. ACI Struct. J., 1999, 96(4): 509.

[121]

Cervera M, Faria R, Oliver J, Prato T. Numerical modelling of concrete curing, regarding hydration and temperature phenomena. Comput. Struct., 2002, 80(18–19): 1511.

[122]

T. Knudsen, Modeling hydration of Portland cement-the effect of particle size distribution, [in] Proceedings of the Engineering Foundation Conference on Characterization and Performance Prediction of Cement and Concrete, New Hampshire, 1982, p. 125.

[123]

Bentz DP. Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations. Cem. Concr. Res., 2006, 36(2): 238.

[124]

Pang X, Meyer C, Darbe R, Funkhouser G P. Modeling the effect of curing temperature and pressure on cement hydration kinetics. ACI Mater. J., 2013, 110(2): 137.

[125]

L.J. Sun, X.Y. Pang, Y.H. Bu, and C.W. Wang, Experimental study of the effect of curing temperature and pressure on the property evolution of oil well cement, [in] Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual Conference, 2021, p. 1397.

[126]

Scherer GW, Funkhouser GP, Peethamparan S. Effect of pressure on early hydration of class H and white cement. Cem. Concr. Res., 2010, 40(6): 845.

[127]

Quercia G, Brouwers HJH, Garnier A, Luke K. Influence of olivine nano-silica on hydration and performance of oil-well cement slurries. Mater. Des., 2016, 96, 162.

[128]

Chen QS, Sun SY, Liu YK, Qi CC, Zhou HB, Zhang QL. Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill. Int. J. Miner. Metall. Mater., 2021, 28(9): 1440.

[129]

Fan D, Yang ST. Mechanical properties of C-S-H globules and interfaces by molecular dynamics simulation. Constr. Build Mater., 2018, 176, 573.

[130]

Baroghel-Bouny V, Mounanga P, Khelidj A, Loukili A, Rafaï N. Autogenous deformations of cement pastes: Part II. W/C effects, micro-macro correlations, and threshold values. Cem. Concr. Res., 2006, 36(1): 123.

[131]

M. Szeląg, Development of cracking patterns in modified cement matrix with microsilica, Materials, 11(2018), No. 10, art. No. 1928.

[132]

Qi CC, Xu XH, Chen QS. Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis. Int. J. Miner. Metall. Mater., 2022, 29(2): 335.

[133]

Tennis PD, Jennings HM. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Concr. Res., 2000, 30(6): 855.

[134]

Vandamme M, Ulm FJ, Fonollosa P. Nanogranular packing of C-S-H at substochiometric conditions. Cem. Concr. Res., 2010, 40(1): 14.

[135]

Nonat A. The structure and stoichiometry of C-S-H. Cem. Concr. Res., 2004, 34(9): 1521.

[136]

Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm FJ. A multi-technique investigation of the nano-porosity of cement paste. Cem. Concr. Res., 2007, 37(3): 329.

[137]

Richardson IG. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res., 2004, 34(9): 1733.

[138]

Richardson IG. The nature of the hydration products in hardened cement pastes. Cem. Concr. Compos., 2000, 22(2): 97.

[139]

Constantinides G, Ulm FJ. The nanogranular nature of C-S-H. J. Mech. Phys. Solids, 2007, 55(1): 64.

[140]

Mondal P, Shah SP, Marks LD, Gaitero JJ. Comparative study of the effects of microsilica and nanosilica in concrete. Transp. Res. Rec., 2010, 2141(1): 6.

[141]

Kim JJ, Rahman MK, Taha MMR. Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR. Appl. Nanosci., 2012, 2(4): 445.

[142]

Yashiro S. Application of particle simulation methods to composite materials: A review. Adv. Compos. Mater., 2017, 26(1): 1.

[143]

Ferrari A, Jimenez-Martinez J, Borgne TL, Méheust Y, Lunati I. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resour. Res., 2015, 51(3): 1381.

[144]

Sun X, Zhang X, Jiao X, Ma J, Liu XZ, Yang H, et al. Injectable bioactive polymethyl methacrylate-hydrogel hybrid bone cement loaded with BMP-2 to improve osteogenesis for percutaneous vertebroplasty and kyphoplasty. Bio-Des. Manuf., 2022, 5(2): 318.

[145]

Carlos LD, Palacio F. Thermometry at the Nanoscale: Techniques and Selected Applications, 2015, London, Royal Society of Chemistry

[146]

Voltolini M, Dalconi MC, Artioli G, et al. Understanding cement hydration at the microscale: New opportunities from ‘pencil-beam’ synchrotron X-ray diffraction tomography. J. Appl. Cryst., 2013, 46(1): 142.

[147]

M. Sun, G.Q. Geng, D.B. Xin, and C.Y. Zou, Molecular quantification of the decelerated dissolution of tri-calcium silicate (C3S) due to surface adsorption, Cem. Concr. Res., 152(2022), art. No. 106682.

[148]

A.J.N. MacLeod, F.G. Collins, and W.H. Duan, Effects of carbon nanotubes on the early-age hydration kinetics of Portland cement using isothermal calorimetry, Cem. Concr. Compos., 119(2021), art. No. 103994.

[149]

Song JH, Belytschko T. Multiscale aggregating discontinuities method for micro-macro failure of composites. Composites Part B, 2009, 40(6): 417.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/