A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

Tao Wei , Qi Zhang , Sijia Wang , Mengting Wang , Ye Liu , Cheng Sun , Yanyan Zhou , Qing Huang , Xiangyun Qiu , Fang Tian

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1897 -1905.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 1897 -1905. DOI: 10.1007/s12613-023-2639-0
Article

A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries

Author information +
History +
PDF

Abstract

All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage, but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li+ transport kinetics due to the solid–solid contacts between the electrodes and the solid-state electrolytes. Herein, a novel gel polymer electrolyte (UPP-5) composed of ionic liquid incorporated metal-organic frameworks nanoparticles (IL@MOFs) is designed, it exhibits satisfying electrochemical performances, consisting of an excellent electrochemical stability window (5.5 V) and an improved Li+ transference number of 0.52. Moreover, the Li/UPP-5/LiFePO4 full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities. This study might provide new insight to create an effective Li+ conductive network for the development of all-solid-state lithium-ion batteries.

Keywords

all solid-state lithium-ion batteries / metal-organic frameworks / gel polymer electrolytes / ionic liquid / solid electrolyte interphase

Cite this article

Download citation ▾
Tao Wei, Qi Zhang, Sijia Wang, Mengting Wang, Ye Liu, Cheng Sun, Yanyan Zhou, Qing Huang, Xiangyun Qiu, Fang Tian. A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 1897-1905 DOI:10.1007/s12613-023-2639-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balogun MS, Qiu WT, Luo Y, et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res., 2016, 9(10): 2823.

[2]

Liu J, Bao ZN, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy, 2019, 4(3): 180.

[3]

Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat. Mater., 2015, 14(10): 1026.

[4]

C. Yu, S. Ganapathy, E.R.H. van Eck, et al., Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface, Nat. Commun., 8(2017), No. 1, art. No. 1086.

[5]

Y.L. Zhao, X.Z. Yuan, L.B. Jiang, et al., Regeneration and reutilization of cathode materials from spent lithium-ion batteries, Chem. Eng. J., 383(2020), art. No. 123089.

[6]

Wei T, Zhang ZH, Zhu ZY, et al. Recycling of waste plastics and scalable preparation of Si/CNF/C composite as anode material for lithium-ion batteries. Ionics, 2019, 25(4): 1523.

[7]

J.B. Zhou, P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: Structure, synthesis, and applications, Chem. Eng. J., 446(2022), art. No. 137041.

[8]

Wang FY, Ye YS, Wang ZM, et al. MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries. Ionics, 2021, 27(10): 4197.

[9]

Wei T, Zhou YY, Sun C, et al. Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode. Particuology, 2024, 84, 89.

[10]

Chen ZH, Belharouak I, Sun YK, Amine K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater., 2013, 23(8): 959.

[11]

Z.H. Gao, S. Rao, T.Y. Zhang, et al., Design strategies of flame-retardant additives for lithium ion electrolyte, J. Electrochem. Energy Convers. Storage, 19(2022), No. 3, art. No. 030910.

[12]

Zhang LP, Li XL, Yang MR, Chen WH. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater., 2021, 41, 522.

[13]

Zhang ZH, Wei T, Lu JH, et al. Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. Int. J. Miner. Metall. Mater., 2021, 28(10): 1565.

[14]

Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang GX. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem, 2019, 5(9): 2326.

[15]

J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., (2023)

[16]

Z.F. Ruan, Y.Z. Du, H.F. Pan, et al., Incorporation of poly(ionic liquid) with PVDF-HFP-based polymer electrolyte for all-solid-state lithium-ion batteries, Polymer;, 14(2022), No. 10, art. No. 1950.

[17]

X.X. Wu, K.Y. Chen, Z.G. Yao, et al., Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries, J. Power Sources, 501(2021), art. No. 229946.

[18]

Xiao ZL, Long TY, Song LB, Zheng YH, Wang C. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics, 2022, 28(1): 15.

[19]

Q.Y. Guo, F.L. Xu, L. Shen, et al., 20 µ m-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries, Energy Mater. Adv., 2022(2022), art. No. 9753506.

[20]

Z.Y. Wang, L. Shen, S.G. Deng, P. Cui, and X.Y. Yao, 10 µm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries, Adv. Mater., 33(2021), No. 25, art. No. 2100353.

[21]

Q. Zhang, S.J. Wang, Y. Liu, et al., UiO-66-NH2 @77 core–shell metal-organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438.

[22]

Sun CW, Liu J, Gong YD, Wilkinson DP, Zhang JJ. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33, 363.

[23]

Zhang QQ, Liu K, Ding F, Liu XJ. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res., 2017, 10(12): 4139.

[24]

Dutta R, Kumar A. Ion transport dynamics in ionic liquid incorporated CuBTC-metal-organic framework based composite polymer electrolyte. J. Mater. Sci., 2019, 30(2): 1117.

[25]

T. Wei, J.H. Lu, P. Zhang, et al., Metal-organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., (2022), art. No. 107947.

[26]

T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 2023. DOI: https://doi.org/10.1002/cjoc.202200816

[27]

Han QY, Wang SQ, Jiang ZY, Hu XC, Wang HH. Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces, 2020, 12(18): 20514.

[28]

Wei T, Zhang ZH, Zhang Q, et al. Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1636.

[29]

T. Wei, Z.M. Wang, M. Zhang, et al., Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries, Mater. Today Commun., 31(2022), art. No. 103518.

[30]

Z.E. Liu, Z.W. Hu, X.A. Jiang, et al., Metal-organic framework confined solvent ionic liquid enables long cycling life quasi-solid-state lithium battery in wide temperature range, Small, 18(2022), No. 37, art. No. 2203011.

[31]

X. Tang, S.Y. Lv, K. Jiang, G.H. Zhou, and X.M. Liu, Recent development of ionic liquid-based electrolytes in lithium-ion batteries, J. Power Sources, 542(2022), art. No. 231792.

[32]

P. Xu, H.Y. Chen, X. Zhou, and H.F. Xiang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660.

[33]

Wei T, Wang ZM, Zhang Q, et al. Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: A review. CrystEngComm, 2022, 24(28): 5014.

[34]

Z.Q. Wang, R. Tan, H.B. Wang, et al., A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery, Adv. Mater., 30(2018), No. 2, art. No. 1704436.

[35]

Y. Liu, Q.H. Zeng, P.P. Chen, et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries, Macromol. Chem. Phys., 223(2022), No. 8, art. No. 2100325.

[36]

Reiter J, Nadherna M. N-Allyl-N-mmethylpipridinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries. Electrochim. Acta, 2012, 71, 22.

[37]

Gao XM, Qu QT, Zhu GB, et al. Piperidinium-based ionic liquid electrolyte with linear solvent and LiODFB for LiFePO4/Li cells at room and high temperature. RSC Adv., 2017, 7(79): 50135.

[38]

C.B. Zhu, H. Cheng, and Y. Yang, Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids, J. Electrochem. Soc., 155(2008), No. 8, art. No. A569.

[39]

R. Dutta and A. Kumar, Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid, J. Phys. D: Appl. Phys., 50(2017), No. 42, art. No. 425302.

[40]

Fujie K, Otsubo K, Ikeda R, Yamada T, Kitagawa H. Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework. Chem. Sci., 2015, 6(7): 4306.

[41]

Z.L. Hu, X.J. Zhang, and S.M. Chen, A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries, J. Power Sources, 477(2020), art. No. 228754.

[42]

Zhou TH, Zhao Y, Choi JW, Coskun A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem. Int. Ed., 2021, 60(42): 22791.

[43]

Wei T, Zhang ZH, Wang ZM, et al. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTF-SI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater., 2020, 3(9): 9428.

[44]

Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), art. No. 116935.

[45]

Chen N, Xing Y, Wang LL, et al. “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy, 2018, 47, 35.

[46]

Zeng QH, Wang JA, Li X, et al. Cross-linked chains of metal-organic framework afford continuous ion transport in solid batteries. ACS Energy Lett., 2021, 6(7): 2434.

[47]

J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 27, art. No. 1902429.

[48]

Wang K, Yang LY, Wang ZQ, et al. Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chem. Commun., 2018, 54(93): 13060.

[49]

Liu M, Zhang S, van Eck ERH, Wang C, Ganapathy S, Wagemaker M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol, 2022, 17(9): 959.

[50]

Z.J. Bi, N. Zhao, L.N. Ma, et al., Interface engineering on cathode side for solid garnet batteries, Chem. Eng. J., 387(2020), art. No. 124089.

[51]

Liu KX, Wang ZY, Shi LY, Jungsuttiwong S, Yuan S. Ionic liquids for high performance lithium metal batteries. J. Energy Chem., 2021, 59, 320.

[52]

D.J. Yoo, K.J. Kim, and J.W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702744.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/