Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters

Xiaobin Geng , Hui Yang , Wenping Guo , Xiaotong Liu , Tao Yang , Jinjia Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2006 -2013.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (10) : 2006 -2013. DOI: 10.1007/s12613-023-2634-5
Article

Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters

Author information +
History +
PDF

Abstract

Cobalt nanoparticles (NPs) catalysts are extensively used in heterogeneous catalytic reactions, and the addition of alkali metal promoters is a common method to modulate the catalytic performance because the catalyst’s surface structures and morphologies are sensitive to the addition of promoters. However, the underlying modulation trend remains unclear. Herein, the adsorption of alkali metal promoters (Na and K) on the surfaces of face-centered-cubic (FCC) and hexagonal-closest packed (HCP) polymorphous cobalt was systematically investigated using density functional theory. Furthermore, the effect of alkali promoters on surface energies and nanoparticle morphologies was revealed on the basis of Wulff theory. For FCC-Co, the exposed area of the (111) facet in the nanoparticle increases with the adsorption coverage of alkali metal oxide. Meanwhile, the (311), (110), and (100) facets would disappear under the higher adsorption coverage of alkali metals. For HCP-Co, the Wulff morphology is dominated by the (0001) and ($10\bar 11$) facets and is independent of the alkali metal adsorption coverage. This work provides insights into morphology modulation by alkali metal promoters for the rational design and synthesis of cobalt-based nanomaterials with desired facets and morphologies.

Keywords

cobalt nanoparticles / alkali promoter / density functional theory / crystal morphology / Wulff construction

Cite this article

Download citation ▾
Xiaobin Geng, Hui Yang, Wenping Guo, Xiaotong Liu, Tao Yang, Jinjia Liu. Theoretical study on the morphology of cobalt nanoparticles modulated by alkali metal promoters. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(10): 2006-2013 DOI:10.1007/s12613-023-2634-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du H, Jiang M, Zhao M, Ma XY, Xu ZW, Zhao ZA. Activity and selectivity enhancement of silica supported cobalt catalyst for alcohols production from syngas via Fischer-Tropsch synthesis. Int. J. Hydrogen Energy, 2022, 47(7): 4559.

[2]

da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB. Cobalt particle size effects on catalytic performance for ethanol steam reforming - Smaller is better. J. Catal., 2014, 318, 67.

[3]

J. Gahtori, G. Singh, C.L. Tucker, E. van Steen, A.V. Biradar, and A. Bordoloi, Insights into promoter-enhanced aqueous phase CO hydrogenation over Co@TiO2 mesoporous nanocomposites, Fuel, 310(2022), art. No. 122402.

[4]

Kang JC, Fan QY, Zhou W, et al. Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. Chem, 2022, 8(4): 1050.

[5]

Luechinger NA, Grass RN, Athanassiou EK, Stark WJ. Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem. Mater., 2010, 22(1): 155.

[6]

Karimpoor AA, Erb U. Mechanical properties of nanocrystalline cobalt. Phys. Status Solidi A, 2006, 203(6): 1265.

[7]

Ghasemi B, Hosseini R, Nayeri FD. Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk. J. Bot., 2015, 39, 769.

[8]

Waris A, Din M, Ali A, et al. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open Life Sci., 2021, 16(1): 14.

[9]

Y. Yang, G.M. Zeng, D.L. Huang, et al., In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics, Small, 16(2020), No. 29, art. No. 2001634.

[10]

Bao YP, Krishnan KM. Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications. J. Magn. Magn. Mater., 2005, 293(1): 15.

[11]

Xu R, Wang DS, Zhang JT, Li YD. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J., 2006, 1(6): 888.

[12]

Gu J, Guo Y, Jiang YY, et al. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C, 2015, 119(31): 17697.

[13]

Sorescu DC. Adsorption and activation of CO coadsorbed with K on Fe(100) surface: A plane-wave DFT study. Surf. Sci., 2011, 605(3–4): 401.

[14]

Mross WD. Alkali doping in heterogeneous catalysis. Catal. Rev. Sci. Eng., 1983, 25(4): 591.

[15]

Rahman TS, Stolbov S, Mehmood F. Alkali-induced effects on metal substrates and coadsorbed molecules. Appl. Phys. A, 2007, 87(3): 367.

[16]

Liu ZP, Hu P. An insight into alkali promotion: A density functional theory study of CO dissociation on K/Rh(111). J. Am. Chem. Soc., 2001, 123(50): 12596.

[17]

Jenkins SJ, King DA. A role for induced molecular polarization in catalytic promotion: CO coadsorbed with K on ${\rm{Co}}\{ 10\bar 10\} $. J. Am. Chem. Soc., 2000, 122(43): 10610.

[18]

Zhang C, Li SG, Zhong LS, Sun YH. Theoretical insights into morphologies of alkali-promoted cobalt carbide catalysts for Fischer–Tropsch synthesis. J. Phys. Chem. C, 2021, 125(11): 6061.

[19]

Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao HJ. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew. Chem. Int. Ed, 2011, 50(32): 7403.

[20]

Wang T, Tian XX, Li YW, Wang JG, Beller M, Jiao HJ. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations. ACS Catal., 2014, 4(6): 1991.

[21]

Gnanamani MK, Jacobs G, Shafer WD, Davis BH. Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica. Catal. Today, 2013, 215, 13.

[22]

Sadeqzadeh M, Karaca H, Safonova OV, et al. Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis. Catal. Today, 2011, 164(1): 62.

[23]

Lillebø AH, Patanou E, Yang J, Blekkan EA, Holmen A. The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts. Catal. Today, 2013, 215, 60.

[24]

Chen L, Song GX, Fu YC, Shen JY. The effects of promoters of K and Zr on the mesoporous carbon supported cobalt catalysts for Fischer–Tropsch synthesis. J. Colloid Interface Sci., 2012, 368(1): 456.

[25]

Zhang ZM, Zhang X, Zhang LJ, et al. Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts. J. Energy Inst., 2020, 93(4): 1581.

[26]

Patanou E, Lillebø AH, Yang JA, Chen D, Holmen A, Blekkan EA. Microcalorimetric studies on Co–Re/γ-Al2O3 catalysts with Na impurities for Fischer–Tropsch synthesis. Ind. Eng. Chem. Res., 2014, 53(5): 1787.

[27]

Ishida T, Yanagihara T, Liu XH, et al. Synthesis of higher alcohols by Fischer–Tropsch synthesis over alkali metal-modified cobalt catalysts. Appl. Catal. A, 2013, 458, 145.

[28]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15.

[29]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169.

[30]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[31]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758.

[32]

Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40(6): 3616.

[33]

Pirug G, Brodén G, Bonzel HP. Coadsorption of potassium and oxygen on Fe(110). Surf. Sci., 1980, 94(2–3): 323.

[34]

Paál Z, Ertl G, Lee SB. Interactions of potassium, oxygen and nitrogen with polycrystalline iron surfaces. Appl. Surf. Sci., 1981, 8(3): 231.

[35]

Zhao P, Cao Z, Liu XC, et al. Morphology and reactivity evolution of HCP and FCC Ru nanoparticles under CO atmosphere. ACS Catal., 2019, 9(4): 2768.

[36]

Zhao S, Liu XW, Huo CF, Li YW, Wang JG, Jiao HJ. Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics. J. Catal., 2012, 294, 47.

[37]

Geng XB, Liu JJ, Yang H, Guo WP, Bai J, Wen XD. Surface morphology evolution of cobalt nanoparticles induced by hydrogen adsorption: A theoretical study. New J. Chem, 2022, 46(19): 9272.

[38]

Barmparis GD, Lodziana Z, Lopez N, Remediakis IN. Nanoparticle shapes by using Wulff constructions and first-principles calculations. Beilstein J. Nanotechnol., 2015, 6, 361.

[39]

Lin H, Liu JX, Fan HJ, Li WX. Compensation between surface energy and hcp/fcc phase energy of late transition metals from first-principles calculations. J. Phys. Chem. C, 2020, 124(20): 11005.

[40]

Liu JX, Su HY, Sun DP, Zhang BY, Li WX. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J. Am. Chem. Soc., 2013, 135(44): 16284.

[41]

Lin H, Liu JX, Fan HJ, Li WX. Morphology evolution of FCC and HCP cobalt induced by a CO atmosphere from ab initio thermodynamics. J. Phys. Chem. C, 2020, 124(42): 23200.

[42]

Liu LL, Yu MT, Wang Q, et al. Theoretically predicted surface morphology of FCC cobalt nanoparticles induced by Ru promoter. Catal. Sci. Technol., 2020, 10(1): 187.

[43]

Eliseev OL, Tsapkina MV, Dement’eva OS, Davydov PE, Kazakov AV, Lapidus AL. Promotion of cobalt catalysts for the Fischer–Tropsch synthesis with alkali metals. Kinet. Catal., 2013, 54(2): 207.

[44]

Liu JX, Su HY, Li WX. Structure sensitivity of CO methanation on Co (0001), ($10\bar 12$) and ($11\bar 20$) surfaces: Density functional theory calculations. Catal. Today, 2013, 215, 36.

[45]

Saib AM, Moodley DJ, Ciobîcă IM, et al. Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. Today, 2010, 154(3–4): 271.

[46]

R.G. Zhang, L. Kang, H.X. Liu, B.J. Wang, D.B. Li, and M.H. Fan, Crystal facet dependence of carbon chain growth mechanism over the HCP and FCC Co catalysts in the Fischer–Tropsch synthesis, Appl. Catal. B, 269(2020), art. No. 118847.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/