Significant strengthening of copper-based composites using boron nitride nanotubes

Naiqi Chen , Quan Li , Youcao Ma , Kunming Yang , Jian Song , Yue Liu , Tongxiang Fan

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1764 -1778.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (9) : 1764 -1778. DOI: 10.1007/s12613-023-2633-6
Article

Significant strengthening of copper-based composites using boron nitride nanotubes

Author information +
History +
PDF

Abstract

Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol% BNNTs/Cu and 3vol% CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K, both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of ∼404 MPa, which is approximately 170% higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27% and 29% higher than those of CNTs/Cu, respectively. This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.

Keywords

boron nitride nanotubes / copper matrix composites / excellent mechanical property / strengthening mechanism

Cite this article

Download citation ▾
Naiqi Chen, Quan Li, Youcao Ma, Kunming Yang, Jian Song, Yue Liu, Tongxiang Fan. Significant strengthening of copper-based composites using boron nitride nanotubes. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(9): 1764-1778 DOI:10.1007/s12613-023-2633-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S.Z. Han, E.A. Choi, S.H. Lim, S. Kim, and J. Lee, Alloy design strategies to increase strength and its trade-offs together, Prog. Mater. Sci., 117(2021), art. No. 100720.

[2]

Azarniya A, Azarniya A, Sovizi S, et al. Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites. Prog. Mater. Sci., 2017, 90, 276.

[3]

X. Zhang, N.Q. Zhao, and C.N. He, The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design–A review, Prog. Mater. Sci., 113(2020), art. No. 100672.

[4]

Harris PJF. Carbon nanotube composites. Int. Mater. Rev., 2004, 49(1): 31.

[5]

Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56.

[6]

Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites–A review. Int. Mater. Rev., 2010, 55(1): 41.

[7]

L.Q. Xiong, K.W. Liu, J. Shuai, Z.C. Hou, L. Zhu, and W.Z. Li, Toward high strength and high electrical conductivity in super-aligned carbon nanotubes reinforced copper, Adv. Eng. Mater., 20(2018), No. 5, art. No. 1700805.

[8]

Meng LL, Wang XJ, Ning JL, Hu XS, Fan GH, Wu K. Beyond the dimensional limitation in bio-inspired composite: Insertion of carbon nanotubes induced laminated Cu composite and the simultaneously enhanced strength and toughness. Carbon, 2018, 130, 222.

[9]

Yoo SJ, Han SH, Kim WJ. A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites. Carbon, 2013, 61, 487.

[10]

Meng LL, Wang XJ, Hu XS, Shi HL, Wu K. Role of structural parameters on strength–ductility combination of laminated carbon nanotubes/copper composites. Compos. Part A, 2019, 116, 138.

[11]

Deng H, Yi JH, Xia C, Yi Y. Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites. J. Alloys Compd., 2017, 727, 260.

[12]

Duan BH, Zhou Y, Wang DZ, Zhao YR. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering. J. Alloys Compd., 2019, 771, 498.

[13]

Liu L, Bao R, Yi JH, Fang D. Fabrication of CNT/Cu composites with enhanced strength and ductility by SP combined with optimized SPS method. J. Alloys Compd., 2018, 747, 91.

[14]

Yang P, You X, Yi JH, et al. Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites. J. Alloys Compd., 2018, 752, 431.

[15]

Akbarpour MR. Analysis of load transfer mechanism in Cu reinforced with carbon nanotubes fabricated by powder metallurgy route. J. Mater. Eng. Perform., 2016, 25(5): 1749.

[16]

Lim BK, Mo CB, Nam DH, Hong SH. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process. J. Nanosci. Nanotechnol., 2010, 10(1): 78.

[17]

Xue ZW, Wang LD, Zhao PT, Xu SC, Qi JL, Fei WD. Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion. Mater. Des., 2012, 34, 298.

[18]

Deng H, Yi JH, Xia C, Yi Y. Improving the mechanical properties of carbon nanotube-reinforced pure copper matrix composites by spark plasma sintering and hot rolling. Mater. Lett., 2018, 210, 177.

[19]

Chen XF, Tao JM, Yi JH, et al. Balancing the strength and ductility of carbon nanotubes reinforced copper matrix composites with microlaminated structure and interdiffusion interface. Mater. Sci. Eng. A, 2018, 712, 790.

[20]

Chen XF, Tao JM, Yi JH, Liu YC, Li CJ, Bao R. Strengthening behavior of carbon nanotube–graphene hybrids in copper matrix composites. Mater. Sci. Eng. A, 2018, 718, 427.

[21]

Liu JP, Xiong DB, Tan ZQ, et al. Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites. Mater. Sci. Eng. A, 2018, 729, 452.

[22]

Nayan N, Shukla AK, Chandran P, et al. Processing and characterization of spark plasma sintered copper/carbon nanotube composites. Mater. Sci. Eng. A, 2017, 682, 229.

[23]

Wang H, Zhang ZH, Hu ZY, et al. Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes. Mater. Sci. Eng. A, 2018, 715, 163.

[24]

Wang XH, Guo BS, Ni S, Yi JH, Song M. Acquiring well balanced strength and ductility of Cu/CNTs composites with uniform dispersion of CNTs and strong interfacial bonding. Mater. Sci. Eng. A, 2018, 733, 144.

[25]

Zhao S, Zheng Z, Huang ZX, et al. Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties. Mater. Sci. Eng. A, 2016, 675, 82.

[26]

Y.H. Li, W. Housten, Y.M. Zhao, and Y.Q. Zhu, Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing, Nanotechnology, 18(2007), No. 20, art. No. 205607.

[27]

Guo CH, Zhan ZJ, Zhang DD. Influence of different preparation processes on the mechanical properties of carbon nanotube-reinforced copper matrix composites. Strength Mater., 2015, 47(1): 143.

[28]

Chen B, Li SF, Imai H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in situ tensile tests. Compos. Sci. Technol., 2015, 113, 1.

[29]

George R, Kashyap KT, Rahul R, Yamdagni S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater., 2005, 53(10): 1159.

[30]

K.T. Kim, J. Eckert, S.B. Menzel, T. Gemming, and S.H. Hong, Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites, Appl. Phys. Lett., 92(2008), No. 12, art. No. 121901.

[31]

Liu ZY, Xiao BL, Wang WG, Ma ZY. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon, 2012, 50(5): 1843.

[32]

Nam DH, Cha SI, Lim BK, Park HM, Han DS, Hong SH. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al−Cu composites. Carbon, 2012, 50(7): 2417.

[33]

Mokdad F, Chen DL, Liu ZY, Xiao BL, Ni DR, Ma ZY. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite. Carbon, 2016, 104, 64.

[34]

Park JG, Keum DH, Lee YH. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon, 2015, 95, 690.

[35]

Trojanová Z, Gärtnerová V, Lukáč P, Drozd Z. Mechanical properties of Mg alloys composites reinforced with short Saffil® fibres. J. Alloys Compd., 2004, 378(1–2): 19.

[36]

Chen W, Cheng HC, Hsu Y. Mechanical properties of carbon nanotubes using molecular dynamics simulations with the inlayer van der Waals interactions. Cmes Comp. Model. Eng. Sci., 2007, 20, 123.

[37]

Y. Yan, X.Q. He, L.X. Zhang, and Q. Wang, Flow-induced instability of double-walled carbon nanotubes based on an elastic shell model, J. Appl. Phys., 102(2007), No. 4, art. No. 044307.

[38]

Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 2000, 289(5479): 602.

[39]

Estili M, Kawasaki A. Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv. Mater., 2010, 22(5): 607.

[40]

Wei XL, Wang MS, Bando Y, Golberg D. Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater., 2010, 22(43): 4895.

[41]

V. Verma, V.K. Jindal, and K. Dharamvir, Elastic moduli of a boron nitride nanotube, Nanotechnology, 18(2007), No. 43, art. No. 435711.

[42]

Oh ES. Elastic properties of various boron–nitride structures. Met. Mater. Int., 2011, 17(1): 21.

[43]

Zhou X, Tang DM, Mitome M, Bando Y, Sasaki T, Golberg D. Intrinsic and defect-related elastic moduli of boron nitride nanotubes as revealed by in situ transmission electron microscopy. Nano Lett., 2019, 19(8): 4974.

[44]

Arenal R, Blase X, Loiseau A. Boron–nitride and boron-carbonitride nanotubes: Synthesis, characterization and theory. Adv. Phys., 2010, 59(2): 101.

[45]

Zhi CY, Bando Y, Tang CC, Golberg D. Boron nitride nanotubes. Mater. Sci. Eng., 2010, 70(3–6): 92.

[46]

Kostoglou N, Tampaxis C, Charalambopoulou G, et al. Boron nitride nanotubes versus carbon nanotubes: A thermal stability and oxidation behavior study. Nanomaterials, 2020, 10(12): 2435.

[47]

Garel J, Leven I, Zhi CY, et al. Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett., 2012, 12(12): 6347.

[48]

Yamaguchi M, Tang DM, Zhi CY, Bando Y, Shtansky D, Golberg D. Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Mater., 2012, 60(17): 6213.

[49]

Niguès A, Siria A, Vincent P, Poncharal P, Bocquet L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater., 2014, 13(7): 688.

[50]

A. Falin, Q.R. Cai, E.J.G. Santos, et al., Mechanical properties of atomically thin boron nitride and the role of interlayer interactions, Nat. Commun., 8(2017), art. No. 15815.

[51]

T. Dumitrică and B.I. Yakobson, Rate theory of yield in boron nitride nanotubes, Phys. Rev. B, 72(2005), No. 3, art. No. 035418.

[52]

Nautiyal P, Zhang C, Loganathan A, Boesl B, Agarwal A. High-temperature mechanics of boron nitride nanotube “buckypaper” for engineering advanced structural materials. ACS Appl. Nano Mater., 2019, 2(7): 4402.

[53]

M. Antillon, P. Nautiyal, A. Loganathan, B. Boesl, and A. Agarwal, Strengthening in boron nitride nanotube reinforced aluminum composites prepared by roll bonding, Adv. Eng. Mater., 20(2018), No. 8, art. No. 1800122.

[54]

Cong ZY, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Compos. Struct., 2018, 194, 80.

[55]

Ahmad P, Khandaker MU, Khan ZR, Amin YM. Synthesis of boron nitride nanotubes via chemical vapour deposition: A comprehensive review. RSC Adv., 2015, 5(44): 35116.

[56]

Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE. Solution–liquid–solid growth of crystalline III–V semiconductors: An analogy to vapor–liquid–solid growth. Science, 1995, 270(5243): 1791.

[57]

Jiang KL, Feng C, Liu K, Fan SS. A vapor–liquid–solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol., 2007, 7(4): 1494.

[58]

Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE. CVD growth of boron nitride nanotubes. Chem. Mater., 2000, 12(7): 1808.

[59]

Long XY, Wu J. Progress in synthesis of boron nitride nanotube. New Chem. Mater., 2018, 46(4): 16.

[60]

Carlson ON, Lichtenberg RR, Warner JC. Solid solubilities of oxygen, carbon and nitrogen in yttrium. J. Less Common Met., 1974, 35(2): 275.

[61]

Qian K, Chen B, Zhao PX, Zhang MS, Liu K. Solubility of nitrogen in liquid Ni, Ni−Nb, Ni−Cr−Nb, Ni−Fe−Nb, and Ni−Cr−Fe−Nb systems. ISIJ Int., 2019, 59(12): 2220.

[62]

Borgstedt HB, Guminski C. The B−Li (boron–lithium) system. J. Phase Equilib., 2003, 24(6): 572.

[63]

Adams PF, Hubberstey P, Pulham RJ. Review of the solubility of non-metals in liquid lithium. J. Less Common Met., 1975, 42(1): 1.

[64]

Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K. Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett., 2000, 324(5–6): 359.

[65]

Y. Huang, J. Lin, C.C. Tang, et al., Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm, Nanotechnology, 22(2011), No. 14, art. No. 145602.

[66]

Bartnitskaya TS, Lyashenko VI, Kurdyumov AV, Ostrovskaya NF, Rogovaya IG. Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis. Powder Metall. Met. Ceram., 1995, 33(7–8): 335.

[67]

Matveev AT, Firestein KL, Steinman AE, et al. Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter. Nano Res., 2015, 8(6): 2063.

[68]

Terauchi M, Tanaka M, Matsuda H, Takeda M, Kimura K. Helical nanotubes of hexagonal boron nitride. J. Electron. Microsc. (Tokyo), 1997, 46(1): 75.

[69]

Li L, Liu XW, Li LH, Chen Y. High yield BNNTs synthesis by promotion effect of milling-assisted precursor. Microelectron. Eng., 2013, 110, 256.

[70]

Hata KJ, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306(5700): 1362.

[71]

Kim J, Lee S, Uhm YR, Jun J, Rhee CK, Kim GM. Synthesis and growth of boron nitride nanotubes by a ball milling-annealing process. Acta Mater., 2011, 59(7): 2807.

[72]

Li YJ, Zhou JE, Zhao K, Tung S, Schneider E. Synthesis of boron nitride nanotubes from boron oxide by ball milling and annealing process. Mater. Lett., 2009, 63(20): 1733.

[73]

C.C. Tang, Y. Bando, T. Sato, and K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes, Chem. Commun., 2002, No. 12, p. 1290.

[74]

C.H. Lee, J.S. Wang, V.K. Kayatsha, J.Y. Huang, and Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition, Nanotechnology, 19(2008), No. 45, art. No. 455605.

[75]

Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269(5226): 966.

[76]

Golberg D, Bando Y, Tang CC, Zhi CY. Boron nitride nanotubes. Adv. Mater., 2007, 19(18): 2413.

[77]

P. Ahmad, M.U. Khandaker, Y.M. Amin, and N. Muhammad, Synthesis of highly crystalline multilayered boron niride microflakes, Sci. Rep., 6(2016), art. No. 21403.

[78]

Bhalerao GM, Sinha AK, Sathe V. Defect-dependent annealing behavior of multi-walled carbon nanotubes. Physica E, 2008, 41(1): 54.

[79]

Guo QN, Yue XD, Yang SE, Huo YP. Tensile properties of ultrathin copper films and their temperature dependence. Comput. Mater. Sci., 2010, 50(2): 319.

[80]

Lipecka J, Andrzejczuk M, Lewandowska M, Janczak-Rusch J, Kurzydłowski KJ. Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes. Compos. Sci. Technol., 2011, 71(16): 1881.

[81]

Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)–reinforced aluminum matrix composites. Carbon, 2017, 114, 198.

[82]

Liu ZY, Xiao BL, Wang WG, Ma ZY. Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method. Compos. Part A, 2017, 94, 189.

[83]

Dong SH, Zhou JQ, Hui D. A quantitative understanding on the mechanical behaviors of carbon nanotube reinforced nano/ultrafine-grained composites. Int. J. Mech. Sci., 2015, 101–102, 29.

[84]

Chen XF, Tao JM, Yi JH, et al. Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity. Diamond Relat. Mater., 2018, 88, 74.

[85]

Hansen N. Hall–Petch relation and boundary strengthening. Scripta Mater., 2004, 51(8): 801.

[86]

Jenei P, Gubicza J, Yoon EY, Kim HS, Lábár JL. High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by high pressure torsion. Compos. Part A, 2013, 51, 71.

[87]

X.Y. Zhang, W.G. Li, J.Z. Ma, et al., Temperature dependent strengthening mechanisms and yield strength for CNT/metal composites, Compos. Struct., 244(2020), art. No. 112246.

[88]

Chen X, Wang X, Liu BY. Effect of temperature on elastic properties of single-walled carbon nanotubes. J. Reinf. Plast. Compos., 2009, 28(5): 551.

[89]

X.Y. Zhang, W.G. Li, J.X. Shao, et al., Temperature dependent vacancy formation energy of metallic materials, Physica B, 584(2020), art. No. 412071.

[90]

N.D. Xu, W.G. Li, J.Z. Ma, et al., Modeling of temperature-dependent hardness for pure FCC and HCP metals, Int. J. Appl. Mech., 12(2020), No. 2, art. No. 2050022.

[91]

Shao JX, Li WG, Wang RZ, et al. Temperature dependent compressive yield strength model for short fiber reinforced magnesium alloy matrix composites. J. Mater. Sci., 2018, 53(8): 6065.

[92]

Yang M, Weng L, Zhu HX, Fan TX, Zhang D. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon, 2017, 118, 250.

[93]

Liu JP, Fan GL, Tan ZQ, et al. Mechanical properties and failure mechanisms at high temperature in carbon nanotube reinforced copper matrix nanolaminated composite. Compos. Part A, 2019, 116, 54.

[94]

Wang Y, Huang C, Li RT, et al. Enhanced mechanical properties of boron nitride nanosheets/copper composites with a bioinspired laminated structure. Compos. Interfaces, 2022, 29(9): 999.

[95]

Chu K, Jia CC, Li WS, Wang P. Mechanical and electrical properties of carbon–nanotube-reinforced Cu−Ti alloy matrix composites. Phys. Status Solidi A, 2013, 210(3): 594.

[96]

M. Estili and Y. Sakka, Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites, Sci. Technol. Adv. Mater., 15(2014), No. 6, art. No. 064902.

[97]

Y.C. Fan, E.H. Song, T. Mustafa, et al., Liquid-phase assisted engineering of highly strong SiC composite reinforced by multiwalled carbon nanotubes, Adv. Sci., 7(2020), No. 21, art. No. 2002225.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/